【英文原版】StableDiffusion3技术报告-英.docx
《【英文原版】StableDiffusion3技术报告-英.docx》由会员分享,可在线阅读,更多相关《【英文原版】StableDiffusion3技术报告-英.docx(30页珍藏版)》请在第壹文秘上搜索。
1、ScalingRectifledFlowTransformersforHigh-ResolutionImageSynthesisPatrickEsserSumithKulalAndreasBlattmannRahimEntezariJonasMu,llerHarrySainiYam1.eviDominik1.orenzAxelSauerFredericBoeselDustinPodelITimDockhornZionEnglishKyle1.aceyAlexGoodwinYannikMarekRobinRombach*StabilityAIFigure1.High-resolutionsamp
2、lesfromour8Brectifiedflowmodel,showcasingitscapabilitiesintypography,precisepromptfollowingandspatialreasoning,attentiontofinedetails,andhighimagequalityacrossawidevarietyofstyles.AbstractDiffusionmodelscreatedatafromnoisebyinvertingtheforwardpathsofdatatowardsnoiseandhaveemergedasapowerfulgenerativ
3、emodelingtechniqueforhigh-dimensional,perceptualdatasuchasimagesandvideos.Rectifiedflowisarecentgenerativemodelformulationthatconnectsdataandnoiseinastraightline.Despiteitsbettertheoreticalpropertiesandconceptualsimplicity,itisnotyetdecisivelyestablishedasstandardpractice.Inthiswork,weimproveexistin
4、gnoisesamplingtechniquesfbrtrainingrectifiedflowmodelsbybiasingthemtowardsperceptuallyrelevantscales.Throughalarge-scalestudy,wedemon-4Equalcontribution.stability.ai.stratethesuperiorperformanceofthisapproachcomparedtoestablisheddiffusionformulationsforhigh-resolutiontext-to-imagesynthesis.Additiona
5、lly,wepresentanoveltransformer-basedarchitecturefortext-to-imagegenerationthatusesseparateweightsforthetwomodalitiesandenablesabidirectionalflowofinformationbetweenimageandtexttokens,improvingtextcomprehension,typography,andhumanpreferenceratings.Wedemonstratethatthisarchitecturefollowspredictablesc
6、alingtrendsandcorrelateslowervalidationlosstoimprovedtext-to-imagesynthesisasmeasuredbyvariousmetricsandhumanevaluations.Ourlargestmodelsoutperformstate-of-the-artmodels,andwewillmakeourexperimentaldata,code,andmodelweightspubliclyavailable.1. IntroductionDiffusionmodelscreatedatafromnoise(Songetal.
7、,2020).Theyaretrainedtoinvertforwardpathsofdatatowardsrandomnoiseand,thus,inconjunctionwithapproximationandgeneralizationpropertiesofneuralnetworks,canbeusedtogeneratenewdatapointsthatarenotpresentinthetrainingdatabutfollowthedistributionofthetrainingdata(Sohl-Dicksteinetal.,2015;Song&Ermon,2020).Th
8、isgenerativemodelingtechniquehasproventobeveryeffectiveformodelinghigh-dimensional,perceptualdatasuchasimages(HOetal.,2020).Inrecentyears,diffusionmodelshavebecomethede-factoapproachforgeneratinghigh-resolutionimagesandvideosfromnaturallanguageinputswithimpressivegeneralizationcapabilities(Sahariaet
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 英文原版 StableDiffusion3 技术 报告