3.2.2 函数模型的应用举例.docx
《3.2.2 函数模型的应用举例.docx》由会员分享,可在线阅读,更多相关《3.2.2 函数模型的应用举例.docx(12页珍藏版)》请在第壹文秘上搜索。
1、第2课时函数模型的应用举例导入新课思路1(事例导入)一辆汽车在水平的马路上匀加速行驶,初速度为vo,加速度为a,那么经过t小时它的速度为多少?在这t小时中经过的位移是多少?试写出它们函数解析式,它们分别属于那种函数模型?v=vo+at,s=vot+at2,它们分别属于一次函数模型和二次函数模型.2不仅在物理现象中用到函数模型,在其他现实生活中也常常用到函数模型,今日我们接着探讨函数模型的应用举例.思路2.(干脆导入)前面我们学习了函数模型的应用,今日我们在巩固函数模型应用的基础上进一步探讨函数拟合问题.推动新课新知探究提出问题我市某企业常年生产一种出口产品,依据需求预料:进入21世纪以来,前8
2、年在正常状况下,该产品产量将平稳增长.已知2000年为第一年,头4年年产量f(x)(万件)如下表所示:X1234f(x)4.005.587.008.441。画出20002003年该企业年产量的散点图:建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展改变的函数模型,并求之.2o2006年(即x=7)因受到某外国对我国该产品反倾销的影响,年产量应削减30%,试依据所建立的函数模型,确定2006年的年产量应当约为多少?什么是函数拟合?总结建立函数模型解决实际问题的基本过程.探讨结果:1。如图3-2-2-5,a+b=435设f(x)=ax+b,代入(1,4)、(3,7),得解得a=,b=-
3、.3a+b=7,22C35.f(x)=-x-.2 2检验:f(2)=5.5,5.58-5.5=0.080.1;f(4)=8.5,8.44-8.5=0.060,且52040x0,即0x13,于是可得v=(520-40x)x-200=-40x2+520x-200,0x13.易知,当x=6.5时,y有最大值.所以,只需将销售单价定为11.5元,就可获得最大的利润.变式训练某工厂现有80台机器,每台机器平均每天生产384件产品,现打算增加一批同类机器以提高生产总量,在试生产中发觉,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)假如增加X台机器,每天的生产总量为y件,
4、请你写出y与X之间的关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?解:(1)设在原来基础上增加X台,则每台生产数量为384-4x件,机器台数为80+x,由题意有y=(80+x)(384-4x).(2)整理得y=-42+64x+30720,由y=-42+64x+30720,得y=-4(x-8)2+30976,所以增加8台机器每天生产的总量最大,最大生产总量为30976件.点评:二次函数模型是现实生活中最常见数学模型.例2某地区不同身高的未成年男性的体重平均值如下表:身高fcm60708090100110120130140150160170体重Ag6.137.909.
5、9912.1515.0217.5020.9226.8631.1138.8547.2555.05(1)依据上表供应的数据,能否建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重ykg与身高Xcm的函数关系?试写出这个函数模型的解析式.(2)若体重超过相同身高男性体重的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm,体重为78kg的在校男生的体重是否正常?活动:学生先思索或探讨,再回答.老师依据实际,可以提示引导:依据表的数据画出散点图.视察发觉,这些点的连线是一条向上弯曲的曲线.依据这些点的分布状况,可以考虑用y=abx这一函数模型来近似刻画这个地区未成年男性体
6、重ykg与身高Xcm的函数关系.解:(1)以身高为横坐标,体重为纵坐标,画出散点图(图3-2-2-7).依据点的分布特征,可以考虑用y=abx作为刻画这个地区未成年男性体重ykg与身高xcm关系的函数模型.假如取其中的两组数据(70,7.90),(160,47.25),代入y=ab,得1.2,所以这个男生偏胖.变式训练IPrI1.1.1.1)1q=一,所以f(x)=X2+X.222r=0,九十年头,政府间气候改变专业委员会(IPCC)供应的一项报告指出:使全球气候逐年变暖的一个重要因素是人类在能源利用与森林砍伐中使C02浓度增加.据测,1990年、1991年、1992年大气中的CO?浓度分别比
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 3.2.2 函数模型的应用举例 3.2 函数 模型 应用 举例