导数含参数取值范围分类讨论题型总结与方法归纳.docx
《导数含参数取值范围分类讨论题型总结与方法归纳.docx》由会员分享,可在线阅读,更多相关《导数含参数取值范围分类讨论题型总结与方法归纳.docx(21页珍藏版)》请在第壹文秘上搜索。
1、导教习题题型十七:合多藏导致河题的分类讨论问题含参数导数问题的分类甘论问题1.求导后,导函数的解析式具有参数,导函数为零有实根(或导函数的分子能分解因式),导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。已知函数f(x)=g3-g(+2)2+20r(a0),求函数的单调区间,(x)=x-(a+2)X+2a=(x-a)(x-2) 例1已知函数/(幻=X-二-(+2)lnx(a0)求函数的单调区间X,X2-(a+2)x+2a_(x-2)(x-a)J=2-xixi 例3已知函数f(X)=J1(eR),其中qR.(I)当4=1时,求曲线y=(力在点(2,7(2)处H勺切
2、线方程;(II)当。工0时,求函数/(x)H勺单调区间与极值。解:(I)当Q=I时,曲线y=(x)在点(2J(2)处的切线方程为6x+25y32=0。(II)由于0,因此/()=2j+iy2,由/(x)=0,得七=一,为=。这两个实根都在定卜+1Ja,z、2(x2+l)-2x(2or-6/2+l)-2a()卜+:/X)=5二-=-义域R内,但不知它们之间卜由)(XM)三大小。因此,需对参数日勺取值分。0和lv两种状况进行讨论。当10时,则药冗2。易得F(X)在区间(一8,(,+8)内为减函数,在区间卜J,)为增函数。故函数力在百二一:处获得极小值/1)=-/;函数/(x)在毛=4处获得极大值/
3、()=1。(1)当。0时,则不赴。易得“X)在区间(一8,。),(一+8)内为增函数,在区间3-十)为减函数。故函数“X)在=-:处获得极小值函数X)在%=0处获得极大值/()=1。以上三点即为含参数导数问题的三个基本讨论点,在求解有关含参数的导数问题时,可按上述三点的次序对参数进行讨论。因此,对含参数的导数问题H勺讨论,还是有一定H勺规律可循的。当然,在详细解题中,也许要讨论其中的两点或三点,这时的讨论就更复杂某些了,需要灵活把握。(区间确定零点不确定的典例)例4某分企业经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总企业交a元(3WaW5)的管理费,估计当每件产品的售价为X元(9
4、xll)时,一年的销售量为(12-)2万件.(1)求分企业一年的利润1.(万元)与每件产品的售价X於I函数关系式;(2)当每件产品的售价为多少元时,分企业一年日勺利润1.最大,并求出1.的最大值Q(八).解(1)分企业一年的利润1.(万元)与售价X的函数关系式为:1.=(-3-a)(12-)2,x9,11.(2)1.,(x)=(12-)-2(-3-a)(12-)93y,=(12-)(18+2a-3x).令1.=O得x=6+2a或x=12(不合题意,舍去).3V3a5,86+-a-.33在x=6+2a两侧1.B值由正变负.3因此当86+-a9即3a2时,32UX=1.(9)=(9-3-a)(12
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 参数 范围 分类 讨论 题型 总结 方法 归纳