微专题10 求函数的值域问题 (解析版).docx
《微专题10 求函数的值域问题 (解析版).docx》由会员分享,可在线阅读,更多相关《微专题10 求函数的值域问题 (解析版).docx(29页珍藏版)》请在第壹文秘上搜索。
1、微专题10求函数的值域问题【方法技巧与总结】函数值域的求法实际上求函数的值域是个比较更杂的问题,虽然给定了函数的定义域及其对应法则以后,值域就完全确定了,但求值域还是特别要注意讲究方法,常用的方法有:观察法:通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数的图象的“最高点”和“最低点”,观察求得函数的值域;配方法:对二次函数型的解析式可先进行配方,在充分注意到自变量取值范围的情况下,利用求二次函数的值域方法求函数的值域;判别式法:将函数视为关于自变量的二次方程,利用判别式求函数值的范围,常用于一些“分式”函数等;此外,使用此方法要特别注意自变量的取值范围;换元法:通过对函数的解
2、析式进行适当换元,将复杂的函数化归为几个简单的函数,从而利用基本函数的取值范围来求函数的值域.求函数的值域没有通用的方法和固定的模式,除了上述常用方法外,还有最值法、数形结合法等.总之,求函数的值域关键是重视对应法则的作用,还要特别注意定义域对值域的制约.【题型归纳目录】题型一,常见(一次函数、二次函数、正反比例函数等)函数的值域题型二,复杂(根式型、分式型等)函数的值域题型三:抽象函数的值域题型四:复合函数的值域题型五:判别式法求值域题型六:根据值域求参数的值或者范围问题题型七:根据函数的值域求定义域【典型例题】题型一:常见(一次函数、二次函数、正反比例函数等)函数的值域例1.已知=则/()
3、的值域为.【答案】(1,北)【解析】令f=四,则=1+h1,所以1.=fT,XXX所以“f)=(ry+l,故/(力的解析式为f()=(-l)2+l(l),其值域为(l,a)故答案为:(1,E).例2.函数),=的值域为.-X+x+2【答案】(f,o)uG,+)【解析】由题得一2+2wo,.w且2.1QQ因为一2+2=-(x-7r)2+,=-2-+=-(z+1)2+l.22222因为f0,所以y,即函数/()的值域为(-,g.例5.作出下列函数的图象,并根据图象求其值域:(l)y=-3x+4,x-l,3;4(2)y=-px?3,O)7(O,l.【解析该函数的图象如图所示,由图可知值域为-5,刀;
4、(2)作出函数y=-3x?3,0)?(0,1的图象,如图所示,由图象可知值域为(-8,-4D,oo题型二,复杂(根式型、分式型等)函数的值域例6.求函数),=f+4正57的值域.【解析】令则=1,由do及i-2o,得OWYwg,所以0tl,1_/2、1则y=+4/=一一Z2+4/+-(0Zl)222为开口向下的二次函数,对称轴为/=4,故在小。1单调递增因此当,=0时,11in=g:当,=1时,y11m=4故函数的值域为;,4.例7.函数尸第;5,10的值域是:X3,-2)U(T1)的值域是【答案】y,卜吗1亿+2x-l2(x+2)-5x+2x+2【解析】),如下:QIQ所以x5,10的值域是
5、因为当x=-3时y=7,当=l时y=g,故答案为:小哥:s,;)=。,”)例8.函数y=2J-+4的值域是【答案】0,2.【解析】-V+4%=-(x-2)2+44,-2+4x0,0-x2+4x4,OJ-X2+4X2,-2故函数y=2-J/+4X的值域是0,2.故答案为:0,2例9.己知函数/(X)=丁丁的值域是口,2,那么函数X)的定义域是.3-2x【答案】.【解析】=-=-1Y由lf(x)2得3-5,即l3-2%g,解得xl,所32x213-2x/3-2x33以f(x)的定义域是3故答案为:!例10.已知函数/(X)=三的定义域为。+),则函数/U)的值域为()x+1A.-2,-o)B.-2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微专题10 求函数的值域问题 解析版 专题 10 函数 值域 问题 解析
![提示](https://www.1wenmi.com/images/bang_tan.gif)