06因子分析,DOC.docx
《06因子分析,DOC.docx》由会员分享,可在线阅读,更多相关《06因子分析,DOC.docx(13页珍藏版)》请在第壹文秘上搜索。
1、因子分析专题8.1引言因子分析是主成分分析的推广,它也是一种把多个变量化为少数几个综合变量的多元分析方法,其目的是用有限个不可观测的隐变量来解稗原始变量之间的相关关系。例8.1.11.inden对二次大战以来奥林匹克十项全能比赛的得分做了分析研究,他收集了160组数据,这十个全能项目依次为:100米幽、跳远、铅球、跳而、400米跑、110米跨栏、铁饼、撑竿跳高i、标枪、1500米造。但是总的来说基本上可归结为他们的短跑速度、爆发性臂力、爆发性能力和耐力这四个方面,每一个方面都称为一个因子。用芭,8,分别表示十个项目的得分,它们可以表示为含有上述四个因子的线性模型:X,=冉+a,fl+%人+,j
2、+%hi=1,2,JO其中九人Ja表示4个因子,称为公因子,为称为第i个变量在第j个因子上的载荷。,是总平均,C,是第i项得分不能被四个公因子解释的部分,称之为特殊因子。这个模型形式上与线性回归模型几乎样,但是它们有着本J贞的区别:回归模型中自变量是可以被观测得到的,而上述因了模型中的/,4J,./,是不可观测的隘变量,这使得该模型理解起来较为困难:再者,两个模型的参数意义也很不相同。例8.1.2为了评价高中学生将来进大学时的学习能力,抽了200名高中生进行问卷调查,共50个问题“所有这些问题可简单地归结为阅读理解、数学水平和艺术修养这三个方面。这也是一个因子分析模型,每一方面就是一个因子。例
3、8.1.3公司老板对48名申请工作的人进行面试,并给出申请人在15个方面所得的分数,这15个方面是:(1)中请信的形式:(2)外貌:(3)专业能力:)讨人喜欢的能力:(5)自信心:6)洞察力:(7)诚实:(8)推销能力:(9)经脸:10)驾驶汽车本领:(11)抱负:(12)理解能力;(13)潜力:(14)对工作要求强烈程度(15)适应性。这些问题可以归结为如下的几个方面:申谙者外露的能力,讨人喜欢的程度,申请者的经验,专业能力。每一方面都是因子模型中的一个因子。8.2因子模型一、数学模型设维可观测的M机向垃=(内,4,的均值为=3协方差矩阵为=(ll),因子分析的一般模里为M=M+%/+。”人
4、+GX1=2+2IZ+atif2+a2mfm+2,oox,=,+4/+叫J?+a/+。其中f,ro为公因子,与,白,与为特殊因子,它们都是不可观测的随机变量。公因子工,2,Je出现在每一个原始变量阳C=12卬)的表达式中,可理解为原始变址共同具有的公共因素:每个公因子/,(/=12,。至少对两个原始变量有作用,否则它将归入特殊因子。每个特殊因子%N=12,0仪仅出现在与之相应的第i个原始变量X,的表示式中,它只对这个原始变量有作用。(8.2.1)式可用矩阵表示为X=+Af+,(,P)为公因子向垃,=(邑,6J为特殊因子向最,A=(%):px,“称为因子载荷矩阵,并假设A的秩为,通常假定W)=O
5、m.,E(G=OMV(J)=4/-凤/)1/-EU)H=E0=J8.2.3),)=-E(c)-E()=E,=D=diag(,j,.)CoVef=E-E(-E(f)JI=E(f,)=Qmxp同理易知co,(J)=E-E()Yf-f()=Ew)=O,注意两个协方差矩阵阶数不一样。由上述假定可以看出,公因子彼此不相关且具有单位方差,特殊因子彼此不相关且和公因子也不相关。因子分析与主成分分析是多元分析中两种重要的降维方法,但两者有很大的不同。主成分分析不能作为个模型来描述,它只能作为般的变量变换,主成分是可观测的原始变51的线性组合:而因子分析需要构造一个因子模型,公因子一般不能表示为原始变量的线性组
6、合.二、因子模型的性质1 .X的协方差矩阵的分解由(8.2.2)式知即Z=A4+O8.2.4)这就是的一个分解:如果K为标准化了的随机向量,则E就是相关矩阵K=(八)什,即有R=AA,+D0,(/-1,2,/?)于是/=Ar=A(+/V+)=+,令,=,A=A,f=f1=,则有=+A+e(仍然为因子分析模型)这个模型能满足完全类似于(823)式的假定,即其中即O=diaR(T.T;,.,),l=y*z2.(=l,2,p)3.因子教荷是不唯一的设了为任意,xn正交矩阵,令f=47,f=Tf,则模型(8.2.2)式能表示为因为所以仍满足条件(8.2.3)式。从(8.2.4)式可以看出,Z也可分解为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 06 因子分析 DOC
