matrilearning矩阵学习.docx
《matrilearning矩阵学习.docx》由会员分享,可在线阅读,更多相关《matrilearning矩阵学习.docx(18页珍藏版)》请在第壹文秘上搜索。
1、一、高斯消元法以及(高斯消元法及矩阵)ThreePossibilities UNIQUESO1.UTION:TberViSOneandcmIyonee“valuw*forbeZJSchatsatfecsallequationssimultaneously. NOSO1.UTION:Then、运DOeofvaluforthrxlVthatatii!iHinmha!xi2ilytlwwlutioHetwempty. INFINITE1.YMANYSO1.UTIONS:TiMmart-hhndynuyiiflcrentHeUofVaJueeforthtiUlalSat耶allequationsxim
2、ultAiMMMudy.ItuIKMiifcdttoPrcyVrthatifwtemhasttnorvtluhton.tlrnithzinfinitelytnAnysolutioic*.R*rxAinplc,itwixnpus*iblcfuraxp*U11UjIiavcrxwtytwodiHcrrtt4uto!u.行阶梯阵及其秩RankofaMatrixSUPPoeCAmxnisreducedbyrowoperationstoanCChCkmformE.Tlrurilofisdefinedtobethenumberrank(=mmbrrOfPiVnU=numberofnonzeroToWxin
3、E=numberofbasiccolumnsinA.wlrvthebtmircolumnsofAarceculunmnhitlmttninthiu)dxiti(H!w*ingfeequivalenttosayingIIuUbUcotMhunt. Inrwreducing:AlIEa11,ftl,tmingf11neverpw3hnnilMwi!hnCoiiMiiiUKmofthe1nuq*luutin.(2.3.5)齐次系统A0系统为,假如有段有至少一个非零数字,即系统变成川以,此系统为.假如Av.,的秩是r,和基础列对应的&是,其它的是有r个,有-,个基础解是的线性组合当且仅当其秩为n时有唯
4、解Summan1.CtAmnbethecoefficientmatrixforaho11ogriMMnwMyMtrrnofmliiM)arCqiIa【iousinnUUknOWns.anduppobrank(八)=r. Theunknownsthatcorrespondtothepositionsoftheba*iccolumns(i.c.athePiVOulpce4tion)arccalledthebajtMmriablrtandtheUnknowi4OOrTeHPOndingtotheoe4tionofIbenonbaMcCUIUnUearcEHCdthenvmriablr, Then?a
5、reCxaCtlyrbajkvanabkal-rfreeVariBl)le. Todescribeallx!utkjuIredUCCAtoarowechelonformuingGatuvianelimination,andthenusebackMIIEitUtiontouohvforthebasicVariat4internbofIbefreeVariabk.ThibProdUCeHthegrtumlnolutumthatha*theformX=lh+rjh2-+Jiwhen?thetermsl.xjr/Rran*XlwfrwvariablesandWhCmIi1.h2bn.rarrnIcol
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- matrilearning 矩阵 学习
