SARS传播模型建立与仿真.docx
《SARS传播模型建立与仿真.docx》由会员分享,可在线阅读,更多相关《SARS传播模型建立与仿真.docx(19页珍藏版)》请在第壹文秘上搜索。
1、SARS传染病模型建立与预料张亚新刘洪光田香玉摘要通过对问题的分析,本文建立了SARS传播的微分方程模型,即:呼=S(DN-F)N一dN(0,其中N(t)表示t时刻的SARS病人数,dts(t)表示t时刻的传播率,r(t)表示表示t时刻的治愈率,d(t)表示表示t时刻的死亡率。本文用s(t)、r(t)、d(t)三个参数较好地描述了SARS的传播过程。通过采集6月20号以前的数据,结合各个参数代表的实际意义,对他们分别进行指数回来分析,得到了s(t)、r(t)、d(t)的表达式,较好地刻划SARS的传播规律,并对疫情作出r预料。本模型的优点表现在:1、通过回来分析的方法使尚散的点连续化;2、用微
2、分方程描述SARS的传播问题更加精确。本文利用MatIab软件,对困难的微分方程进行求解。利用附件1供应的散点数据,得到rSARS病人数目随时间改变的曲线预料图。预料了在6月12日左右疫情将得到缓解,在7月中旬将基本消退。经检验,我们的预料与实际状况是相吻合的。文中调整s(t)、r(t)、d(t)来对模型的结果进行限制,画出提前5天和推后5天进行隔岗时病人数和时间的曲线,其结果与实际状况是相符的C本文建立的微分方程模型能够较好地对SARS的传播过程进行预料,并为政府部门供应决策依据,具有肯定的普遍适用性。关健词:SARS微分方程模型限制参数检验预料SARS(SevereAcuteRespira
3、torySyndrome,严峻急性呼吸道综合症,俗称:SARS型肺炎)是21世纪第一个在世界范圉内传播的传染病。SARS的爆发和扩散给我国的经济发展和人民生活带来了很大影响,我们从中得到了很多重要的阅历和教训,相识到定肽地探讨传染病的传播规律、为预料和限制传染病扩散创建条件的重要性。因此建立一个适合率侬的传染病模型为SARS病毒的预防和限制供应牢微、足够的信息源意义重大。一、模型的假设1.1模型假设:1 .将SARS全部可能的传播途径都视为与病源的广脆接触。2 .在模型的建立中所采纳的数据都是依据卫生部所公布的数据,假设这些数据真实军旅。3 .我们把整个人群看作由两个系统组成,传染系统和非传染
4、系统。传染系统完全由活着的SARS病人组成,且只有活着的SARS病人才具有传染实力,该病人一旦治愈或一旦死亡我们就看作其退出传染系统。全部的非SARS病人组成非传染系统,其中每个成员都有可能被传染成为SARS患者。4非传染系统的成员一旦受传染就马上进入传染系统(不考虑潜藏期),并被确诊通报。5.在相当一段时间内不会出现治疗SARS的特效药。1.2符号规定1、N(t):在t时刻,具有传染实力的SARS病人;2、Nn:第n天,具有传染实力的SARS病人;3、s(t):在t时刻的传染率,即在单位时间内平均每个病人传染的人数;4、sn:第n天的传染率,即在这一天平均每个病人传染的人数;5、R(t):在
5、t时刻,被治愈出院的病人数;6、Rn:第n天,被治愈出院的病人数;7、r(t):在t时刻的治愈率,即R(t)=r(t)N;8、D(t):t时刻的死亡人数;9、Dn:第n天的死亡人数;10、d(t):在t时刻的死亡率,即D0)=d(t)N;11、Q(t):t时刻退出传染系统的人数(包括t时刻死亡人数和治愈人数),即:QG)=DU)+R(I);12、q(t):在t时刻的退出率,即q(0=r(t)+d(t);Na)二、模型的建立与求解在SARS爆发的初期,由于潜藏期的存在,社会对SARS病毒的传播速度和危害程度相识不够,所以政府和公众并不以为然;当人们发觉被感染者不断增加、死亡人数不断增多时,政府起
6、先实行多种措施以限制SARS的进一步扩散.所以SARS的传播可以分为三个阶段:(1)限制前的自然传播模式阶段.(2)过渡期阶段,即公众起先意识到SARS的严峻性到政府实行隔离措施前的一段时间内。(3)限制阶段,即政府实行隔离治疗措施阶段。但是,不管SARS传播处于哪个阶段,影响传播最本质的因索是:自由传染者的数侬N(t),传播的概率s(t)与病毒本身的传播实力(用R(t)和D(t)来衡量)等。所以我们不分阶段进行考虑。第n天的病人是在笫n-1天的基础上加上新增的病人,减去退出传染系统的病人,即:N.=Nn-I)-Drb-RlI移项得(1)经过转换,得U=Nn-NnT+Dn+R.取微分得到下面连
7、续的方程dts(t)N(t)=dN(t)+D(t)dt+R(t)dt即:畔=S(I)N(D-D(I)-R(I)dt由此得到SARS的传播模型为:=S(I)N-qN(I)dtq(t)=d(t)+r(t)N11=N(O)其中s(t)、d(t)、r(t)等参数可以为我们供应所须要的信息。我们只要能够知道s(t)、d(t)、r(t)的表达式,便可以求解微分方程得到N。我们依据附件1中6月20号以前的数据进行拟合,得到s(t)、d(t)、r(t)的走势曲线,从而实现对N(t)的预料。2.1 对于4t)-传染率我们依据附件1市疫情的数据,依据(1)式对S进行描点,得到一些S的散点图。随着时间的推移,隔离措
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- SARS 传播 模型 建立 仿真