1.2 集合间的基本关系(七大题型)(讲义)(解析版).docx
《1.2 集合间的基本关系(七大题型)(讲义)(解析版).docx》由会员分享,可在线阅读,更多相关《1.2 集合间的基本关系(七大题型)(讲义)(解析版).docx(19页珍藏版)》请在第壹文秘上搜索。
1、1.2集合间的基本关系目录【型归纳目录】【好点2【典型例】型I写出给定集合的子集、真子集以及个敷问3M1.Is一一一一一一一一一一一一一一一由集合间的关系求敷的范H1.7四,间一.一.I.一.I.一.I9UH:割断两集合*相等11的III”IIIII”IIIII”IIIII”IIII14【题型归纳目录】【思雉导图】读他/(4令JB(成i/D.)1.awi)C如果两个集介厢M沅京光金IW&*1蒜集合间的基本关系fr.46.V1.UeJUJ.)、檄卷介41强令M1.Kf宴.贝收1.ft.JSirif1.KriUAH)”个皿介儿点若加!个.WKftawt.KarTR力ri).UMM.%集的/级个数为
2、t,个敢为0.【知火点梳理】知火点一.集合与集合的关系(I)一般地,对于两个佻合A,B.如果集合八中任意一个元素都是集合8中的元素,我们就说这两个集合有包含关系,称集合A为B的子集.记作:A(yJcA)读作:A包含于E(或8包含4.图示:(2)如果两个集合所含的元素完全相同(AuB且BqA),那么我们称这两个集合相等.记作:A=B或作:A等于B.4B图示,知板点诠科:(1)“A是8的子集”的含义是:A的任何一个元索都是8的元素,即由任意的xwA,能推出Xw5.2)当A不是B的子集时,我们记作(或32A”,读作:“A不包含于8”(或3不包含Am).知火点二.真子集若篥合A=B,存在元素X811.
3、r华A,则称臾合八是集合B的口子集.记作:A“(或应A)读作:A在包含于8(或8支包含A知识点三.空集不含有任何元素的集合称为空集,记作:0.规定:空集是任何集合的子集.结论,(1)AqA(类比)(2)空集是任何集合的子集,是任何非空集合的真子集.(3)若人u8,8gC,则AUC(类比Mc则ac)(4)一般地,一个集合元素若为个,则其子集改为2个,其文子集数为2-1.个,特别地,空集的子集个数为1,其子集个数为0【典型例题】三三-.写出!&定集合的子集、其子集以及个数向U【典例1-11(2024iT.苏南京二-:模)集合A=(xwN1.-Iv4的子集个数为()A.2B.4C.8D.16【答案】
4、D【蟀析】由遨意,得A=0,1231故集合A了噢个数为2416个.故选:D.【典例1.2】(2024京一.广东梅州开学考试)集合A=x0M31UeN1的口子集的个数是()A.4B.3C.8D.7【答案】D【解析】由IS可咕A=02,所以条介A的桌子集个较为2,-1=7:故选:D【方法技巧与总结】(分类讨论是写出所有子集的方法)1、分类讨论是写出所有子集的有效方法,一般按集合中元素个数的多少来划分,遵循由少到多的潦则,做到不重不漏.2、若集合A中有”个元索.则集合A有2个子集,有(2-1)个直子集,有(2-1.)个非空子集,有(2-2)个非空直子集,该结论可在选择题或地空题中宜接使用.t三A-(
5、I)写出集合的子集利真子集. 2)写出集合“肉的所有子集和典子集. 3)写出集合A=g78的所有子集和其子集.(WtJi)(I)子集:0.II:真子集:0: 2)子集:0.f1.b,a.h:真子氨0.a.也:子集:0.6,7,8,6,7,7.8,6,8.J6.7.8);女子/0,6,7,8,6.7,7.8,6.8.【交式1-2(2024.高一.福建泉州阶段练习)已知集合MxeN.t2.V.teZ-2.v由题意可知M=(M),所以其子象为:0,0卜1,04,式子集为O.*0;(2)因包运可知N=-O1.所以其子集为:0.-1.,O.1.Oj,TO.T1.TO.1.,共2=8个.真F条为:0.-1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.2 集合间的基本关系七大题型讲义解析版 集合 基本 关系 七大 题型 讲义 解析