傅里叶变换分析信号的缺点.docx
《傅里叶变换分析信号的缺点.docx》由会员分享,可在线阅读,更多相关《傅里叶变换分析信号的缺点.docx(10页珍藏版)》请在第壹文秘上搜索。
1、傅里叶变换分析信号的缺点基于傅里叶(FoUrier)变换的信号频域表示,揭示了时间函数和频谱函数之间的内在联系,在传统的平稳信号分析和处理中发挥了极其重要的作用,很多理论探讨和应用探讨都把傅里叶变换当作最基本的经典工具来运用.但是傅里叶变换存在着严峻的缺点:用傅里叶变换的方法提取信号频谱时,须要利用信号的全部时域信息,这是一种整体变换,缺少时域定位功能,因此必需对其加以改进.傅里叶变换的特点及其局限性设函数f(t)在(-8,+8)内有定义,且使广义积分F()=O(Dew戊(1)Rt)=WO3)e”dco(2)都收敛,则称式定义的广义积分为函数饮)的傅里叶变换,记为Ff,(2)式定义的广义积分为
2、逆傅里叶变换,记为FTF(3)傅里叶变换可以完成从时域到领域的转换(正变换),也可以完成从频域到时域的转换(逆变换),但不能同时具有时域和频域信息。其核函数是,决,由于三角函数具有填满整个空间的特性,其在物理空间中是双向无限延长的正弦波,在积分变换中体现为积分范围从+8到-8。因此,傅里叶变换是先天的非局限性,它对信号f(t)中体现任何局部信息处理都是相同的。而事实上,工程技术中的很多信号,如:语音信号、地震信号、心电图和各种电脉冲,他们的信号值只出现在一个短暂的时间间隔仪内,以后快速减为零,At以外是未知的,可能为零,也可能是背景噪音,假如用式从信号中提取谱信号F(O),就要取无限的时间量,
3、运用过去的及将来的信号只为计算单个频谱,不能反映出随时间改变的频率,事实上我们须要的是确定的某个时间间隔内的频谱0这就使人们想到改进傅里叶变换使其能用来处理某个确定时间范围内的信号。GabOr提出的窗口傅里叶变换就是一个有效的方法。另外,傅里叶变换之所得到广泛应用与透镜能实现傅里叶变换是分不开的。由公式11z一、-弛-为厮+加、,、一穹(XEo).,Ur(X/”)=to(x,)exfdx0dy0xf其中物平面为(o,yo),焦平面为(f,yz),d为物距,di为象平面。要使U/yz)=Ft0(x0,y0),即精的确现傅里叶光学变换,只有在,d=,d=f时才能实现,否则将出现位相弯曲。并且,只有
4、正透镜才能实现傅里叶变换,这些限制给工程技术中无疑增加了困难。这使得人们不得不寻求新得的方法,分数傅立叶变换不要求严频谱面,可依据须要在既包含空域信息也包括空频域信息的平面上进行处理,这使光学信息处理更具敏捷性。1傅里叶变换缺乏时间和频率的定位功能傅里叶变换及其逆变换表示如下S()=fs(t)=Is(t)e75aJ-8s(t)=曰:s()e-j3td3由以上两式可知,傅里叶变换是一种整体变换,对信号的表征要么完全在时域内,要么完全在频域内,和t是相互排斥的两个变量.用傅里叶变换的方法得到某一个频率30的频谱重量S(0),必需从-8+8的整个时间轴上进行积分.假如要从频谱得到信号在某一时刻t的值
5、s(t),则须要对S(X)在整个频率轴上进行积分.因此,傅里叶变换得到的是信号s(t)在整个时间范围内的频率特性,它不能告知人们在某段时间里信号发生了什么改变,也无法获得某一频率出现的时刻信息,因此,它不具有时间和频率的定位功能.2傅里叶变换对于非平稳信号的局限性信号的瞬时频率,表示了信号的谱峰在时间-频率平面上的位置及其随时间的改变状况,一般平稳信号的瞬时频率为常数,而非平稳信号的瞬时频率是时间t的函数.从傅里叶变换变换的表达式可以看出,S(X)是单变量X的函数,信号的傅里叶变换不随时间的改变而改变,因此,傅里叶变换仅仅适用于平稳信号.但是,在实际工作中,我们分析和处理的往往是时变的或非平稔
6、的信号,它们的频率随时间改变而改变,其相关函数、功率谱等也是时变信号,用傅里叶变换进行分析,得到的信号频谱反映的是整体信号中包含的某一频率重量的平均值.所以傅里叶变换不能反映信号瞬时频率随时间的改变状况,仅仅适用于分析平稳信号.对频率随时间改变的非平稳信号,傅里叶变换只能给出其总体效果,不能完整地把握信号在某一时刻的本质特征.3傅里叶变换在时间和频率辨别率上的局限性辨别率是信号处理的基本概念之一,包括频率辨别率和时间辨别率.在时域分析中,信号处理的目标是尽可能地同时获得高的时间辨别率和频率辨别率.然而,可以证明时域窗和频域窗乘积恒定且大于等于1/2,也即不行能同时获得高的时频辨别率,这就是闻名
7、的不确定性原理.傅里叶变换在这方面的表现尤其不尽如人意.傅里叶变换可以改写成内积的形式,即+S()=s(t)e-Mt=/-OO由于傅里叶变换等效于s(t)和基函数e戈做内积,而,”对不同的构成一族正交基,因此S(3)精确地反映了s(t)在该频率点的重量大小.基函数(s在频域是位于3处的函数,因此,当用傅里叶变换来分析信号的频域特性时,具有最好的频率辨别率.但是,Ms在时域对应的是正弦函数,其在时域的持续时间是-8+8因此,其时域辨别率最差.对于傅里叶逆变换,辨别率的状况正好相反.这一结果既体现了信号的时频不确定性原理,也反映了傅里叶变换在时域和领域辨别率方面所固有的冲突.明显,便里叶变换本身不
8、行能依据信号的特性来自动调整时域和频域的辨别率.时频分析时频分析(JTFA)即时频联合域分析(JOintTime-FrequencyAna1.ysis)的简称,作为分析时变非平稳信号的有力工具,成为现代信号处理探讨的一个热点,它作为一种新兴的信号处理方法,近年来受到越来越多的重视。时频分析方法供应了时间域与频率域的联合分布信息,清晰地描述了信号频率随时间改变的关系。时频分析的基本思想是:设计时间和频率的联合函数,用它同时描述信号在不同时间和频率的能量密度或强度。时间和频率的这种联合函数简称为时频分布。利用时频分侦来分析信号,能给出各个时刻的瞬时频率及其帕值,并且能够进行时频泄波和时变信号探讨。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 傅里叶变换 分析 信号 缺点