专题22.3 二次函数y=ax+bx+c的图象和性质之八大考点(解析版).docx
《专题22.3 二次函数y=ax+bx+c的图象和性质之八大考点(解析版).docx》由会员分享,可在线阅读,更多相关《专题22.3 二次函数y=ax+bx+c的图象和性质之八大考点(解析版).docx(32页珍藏版)》请在第壹文秘上搜索。
1、专题22.3二次函数y=x2+必+c的图象和性质之八大考点施.【考点导航】目录【典型例】-1【考点一把=?+fer+C化成顶点式】1【考点二亘二次函数广4d+hr+c的图象】2【考点三二次函数uap+fer+c的图象和性质】7【考点四求二次函数与K轴的交点坐标】10【考点五求二次函数与y轴的交点坐标】11【考点六已知二次函数.匕对称的两点求对称轴】12【考点七二次函数的平移】13【考点八根据二次函数的地减性求最值】15【过关3】18K【典型例题】【考点一把产GJ+6x+c化成11点式】例(2023北京海淀校考一模将二次函数y=v-8x-1化成。(工-)?+4的形式,结果为.【答案】y=(-7【
2、分析】利用配方法整理即可御解.【详解】蚱:=r-8.r-1.=r-8.t+16-16-1.=(x-4):-17,故答案为:y=(x-4)?-1.7.【点IIin本跑考查二次函数的二种形式,正确运用配方法把二次函数的一般式化为顶点式是解题的关杨.I:交式训练】1. (2023山西晋中统考柢)相抛物线y=-4-1.化成顶点式为.【答案】=(-2),-5【分析】根据配方法可把次函数的般式化为顶点式.【详解】解:由抛物线F=Y-4x-1可化为顶点式为,Yx-2)-5;故答案为y=(-2)-s.【点吃】本题主要考铿:次函数的图象与性物,熟练掌握把.次函数的般式化为顶点式是解鹿的关镀.2. (2023秋山
3、东淄科九年级校考期末):次函数y=-V+6x-12图里的顶点坐标是.【答案】(3.-3)【分析】将该二次函数解析式化为顶点式,解进行解答.【详解】解:极掘即意可知:y=-Xs+6x-12=-(.r-3)2-3.团该函数图象的顶点坐标为(3,-3),故答案为:(入-3).【点吃】本题主要考在了求.次函数图象的顶点坐标,解题的关键是掌握将:次函数解析式化为顶点式的方法和步骤.3. (2023春江苏无锡九年级校联考期末)二次函数y-4.1.的图象开门向,用点坐标为.【答案】上(2,-5)【分析】将二次函数解析式化为顶点式,即可求解.【详解】解:Ey-.r-4.t-1.=(x-2)z-5.0出她物税开
4、门向上,顶点坐玩为(2,-5).故答案为:,(2.-5).【点出】本SS考查了二次函数图象的性颜,化为顶点式是解超的关谊.【考点二二次函数产0+6x+,的图麓】例H1.(2023秋辽宁大连九年级统考期末)已知:二次函数.=-V+1.v+3.将函数关系式化为=的形式,并指出函数图像的对称轴和顶点坐标;利用描点法画出所给函数的图像.X-1当-1.v2时,观察图像.直接写出函数值的取位范围.【答案】(1.)y=-(x-y+4,对称轴为直线x=1.,顶点坐如为(W)见解析(3)0y4【分析】(1)利用He方法将二次函数解析式化为顶点式即可得到答案:(2先列表,然后描点,最后连线即可;根据南数图象求解即
5、可.【详懈】(1)解:康;次函数解析式为y=-x+2t+3=-(x-2+1.-1.)+3=-(x-1.)+4.0次函数对称轴为宜线=1.,顶点坐标为(图):解r列表如K:函数图如下所示:3)解:由函数图象可知,当-1.x2时,0y4.【点腌】本牌主要考查/把.次函数解析式化为顶点式收.次函数图象,图象法求函数医的取值范附等等,熟知二次函数的相关知识是耕麴的关键.【交式训练】I.(2023全国九年级假期作业)己知她物&F=-Y-4X-1该拊物线的对称轴是.顶点坐标;选取适当的数据填入下表,并在图中的“角坐:M系内描点画出该施物线的图象:Xy(3)若该抛物线上两点AaM,gz)的横坐标满足q埴表见
6、解折,画图见详解(3)v.根据她物戏的对称釉X=,代入对称轴的值即可求解顶点坐标;根据抛物战自变仪的取值范围,适当选取自变最的值,计算函数值,并在平面口.用坐标系中描点,连i即可:根据函数图像的特点即可求解.【详解】(1)解:弛物税f=-4k-1中,a=-,(3对称轴为X=-?=-丁j=V,顶点坐标公式中横坐标为x=-2,2a2x(-1)(3项点坐标的纵坐标的值为y=-2)i-4(-2)-1.=3,G3顶点坐标为(-2.3),故答案为:K=-2.(-2.3).2解:施物纹)=-V-4xI中自变成的取值范围为全体实数.日变质适当如图所示(答案不唯D.X-4-3-2-I0y-I232-I描点、连规
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题22.3 二次函数y=ax+bx+c的图象和性质之八大考点解析版 专题 22.3 二次 函数 ax bx 图象 性质 八大 考点 解析