专题16二次函数的存在性问题(解析版).docx
《专题16二次函数的存在性问题(解析版).docx》由会员分享,可在线阅读,更多相关《专题16二次函数的存在性问题(解析版).docx(53页珍藏版)》请在第壹文秘上搜索。
1、专题16二次函数的存在性问题【典例分析】【考点11二次函数与相似三角形同JI【例1】己知Ii物线y=+b+3与X轴分别交于八(-3,0),8(1,0)两点,与y*交于点C.(1)求务物线的表达式及原点D的坐标I(2)点F是线段AD上一个动点.ACI如图1.设A=77,当卜为何值时,CF=-AD.D2如图2.以A,F,O为1点的三角形是否与AABC相似?若相似,求出点F的坐标.若不相似,请说明理由.【答案】y=-x2-2.x+3,D的坐标为(-1.4);(2)*=:以A,F.O为国立的角形%AABC相似,F点的坐标为(一之或(-2,2).【解析】U的A、B两点的型标代入二次函数解析式,用待定系数
2、法即求出她物线对应的函数去达式,可求得顶点D-1.4);(2)由A、C、D:点的+%;求出AC=炕,DC=0,AD=2而,可得AAeD为直角:角形,分CF=gAD.则京F为AD的中点,可求出k的侑;2由条件可判断NDAC=NoBC.则NOAF=/ACB,若以A.F,O为:菱的JUWjAABe相似.可分两种情况考虑:巧/AOF=/ABC或AOF=CAB=45时,可分别求下点FKR详解1(I).抛物线y=a+bx+3过点A(-3.0),B(1.0),(9-3ft+3=0=-1n+Z+3=0p=-2,楸物浅辘析式为y=-x2-2x+3; :y=-x:-2x+3=-(x+1.)?+4.顶点D的坐标为(
3、-1,4);(2).在RiAOC中,OA=3.OC=3,.AC2=OA2+OC2=18-.D(-1.4),C(0.3),A(-3,0),.-.CD2=I2+I2=2-.AD3=22+42=20.AC2+CD2=AD2.ACD为Kft-:珀形.HZzACD=901.CF=-AD.2:F为AD的中点.AFI =一,D2【讲解】将4-1.0),C(0,3)代入y=+2x+c得:a-2+c=0Ia=-IR,解得Rc=3(c=3 抛物殴解析代为y=-+2*+32)存在.理由如下:联立y=-1.和y=-2+2+3.y=-I(=-I.V=4,C.mn或U37=-x+2x+3y=0(y=-5.E点坐标为(4.
4、5).如图,作AE的垂直平分线,与X轴交TQ,与y相交于Q.此时Q点与Q戊的坐标即为所求,设Q点坐标(8),Q,坐标(0.y).HQA=QE,QA=QE得:|x-(-1.)|=7(.t-4)2+(O+5):.7(0+1.f+(y-0)2=7(0-4)2+(y+5)2解得x=4y=4故(?点坐额为(40)或(0,-4)3)V4(-1,0).E(4,-5):AE=-1.-4)2+52=52.1.-+2x+3=OH.好得工=-1或3AB点坐标为(3.0),:OB=OC=3z52【点睹】本题写出:次函数的嫁合问题,是中考常见的压轴趣中,熟练掌招待定系数法求函数解析式,等眈:角形的性侦,以及相似三角形的
5、性侦是解速的美镀.(*1.12如图,已知It物线F=-1.x+2)(X-M(m01.与轴相交于点A,B,与轴相交于点C,in且点A在点B的左例.(1)若拗物线过点(2,2),求抛物线的解析式I(2)在Q)的条件下,货物线的对玄轴上是否存在一点H,使AH+CH的值量小,若存在,求出点H的坐标】若不存在,请说明理由I(3)在第四象限内,拙物线上是否存在点M使得以点A,B,M为蹊点的三角形与AACB相似?若存在,求出m的值;若不存在,请说明理由.【答案】,1)y=+(2)点H的坐标为(1.;):(3)1.m=2+22t在第四代上内422他为线上存在点M,使得以点A.B.M为顶点的:.角形与AACB相
6、似.【所】分析:(1)把白,22)代入y=-1.(x+2Mx-m)?j中.解出m的值即可得到衲物纹的嚼折式:m可得点AnBwCI.别为,(m.0)和0,2),m如下图,由图可知NACB和NABM足饨角,囚此存在两种可能性:1ACBABM.ACBsMBA,分这两种情况结介题中已知呆件进行分析解答即可.详解:(I)把点(2.2)代入抛物线,得2=-(2+2)(2-m).解得m=4.,帕勒城的解析式为y=-(x+2)(x-4)=-!-x2+-!-x+24422)y=-X2+-X+2=0.解得x=-2,x,=4.42则A(-2.0).B(4,0).二点C的坐标为(0.2).;点A和点B关于拗物线的对称
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 16 二次 函数 存在 问题 解析