教学设计:空间向量的直角坐标运算.docx
《教学设计:空间向量的直角坐标运算.docx》由会员分享,可在线阅读,更多相关《教学设计:空间向量的直角坐标运算.docx(7页珍藏版)》请在第壹文秘上搜索。
1、空间向量的直角坐标运算教学过程:一、复习引入:1 .平面向量的坐标表示分别取与X轴、y轴方向相同的两个单位向量T、j作为基底任作一个向量G,由平面向量基本定理知,有且只有一对实数x、y,使得。=J+9把(x,y)叫做向量值的(直角)坐标,记作Va=(x,y)3其中X叫做5在X轴上的坐标,y叫做)在y轴上/:的坐标,特别地,7=(1,0),J=(OJ),0=(0,0)八2 .平面向量的坐标运算5f;一若=(x,y),b=(x2,y2)f贝J2+B=(Xlx2,y1+y2),a-b=(x1-x2,y1-y2),d=(x,y)若A(X,y),B(x2,y2),则AB=(x2-xl,y2-J)3 .a
2、/b(B的充要条件是xy2r2y尸04 .平面两向量数量积的坐标表示已知两个非零向量2=(x,y),h=(x2,y2),试用不和石的坐标表示展B设;是X轴上的单位向量,/是y轴上的单位向量,那么a=xj+yj,b=x2+y2j所以万石=(j+ylj)(x2i+y2j)=X1X2F2+xlyjJ+x2yJJ+My2产又;.f=l,JJ=T,Ij=JF=0所以展B=xlx2+y1y2这就是说:两个向量的数量积等于它们对应坐标的乘积的和5 .平面内两点间的距离公式(1)设M=(X,y),则2=+v或Ial=2+y2(2)如果表示向量力的有向线段的起点和终点的坐标分别为,必)、(/,当),那么Ial=
3、J(XI-工2)2+(必一必尸(平面内两点间的距离公式)6 .向量垂直的判定设=(再,y),b=(x29y2)f则五_LBx1x2+y1y2=7 .两向量夹角的余弦(06万)CoSVa,b=C05=-=I2W历后正透8 .空间向量的基本定理:若0区2是空间的一个基底,万是空间任意一向量,存在唯一的实数组x,y,z使p=m+)3+zc.二、讲解新课:1.空间直角坐标系:(I)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用7,%表示;(2)在空间选定一点。和一个单位正交基底7JJ,以点。为原点,分别以17,%的方向为正方向建立三条数轴:X轴、y轴、Z轴,它们都叫坐标轴.
4、我们称建立了一个空间直角坐标系。-孙z,点。叫原点,向量都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为Xoy平面,yz平面,ZQr平面;(3)作空间直角坐标系O-孙Z时,一般使ZXOy=I35。(或45),ZyOz=90;(4)在空间直角坐标系中,让右手拇指指向X轴的正方向,食指指向),轴的正方向,如果中指指向Z轴的正方向,称这个坐标系为右手直角坐标系规定立则存在唯一的有序实数组(q,%,%),使= qi + % j + %E ,有序实数组(q,生,”3)叫作向量在空间直角坐标系O-孙Z中的坐标,记作a=(ava2,a3).在空间直角坐标系。-g,z中,对空间任一点A,存在唯一的有序
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教学 设计 空间 向量 直角坐标 运算