中国石油大学《故障诊断技术》大作业参考答案.docx
《中国石油大学《故障诊断技术》大作业参考答案.docx》由会员分享,可在线阅读,更多相关《中国石油大学《故障诊断技术》大作业参考答案.docx(5页珍藏版)》请在第壹文秘上搜索。
1、中国石油大学(华东)现代远程教育大作业课程名称:故障诊断技术报告名称:滚动轴承故障诊断方法与技术综述学生姓名:XXXX学号:XXXX年级专业层次:2X春机械设计制造及其自动化学习中心:山东XX学习中心提交时间:202X年12月9日滚动轴承故障诊断方法与技术综述摘要:机械装备的安全运行对于现代工业发展具有重要的现实意义,同时也能有效保障人员安全和降低企业经济损失,囚此相关的设备故障诊断技术也得到极大关注。轴承作为机械装备特别是旋转机械设备中的重要基础部件,各种复杂工况下,容易发生滚动体变形、磨损、腐蚀、裂缝等各种形式的缺陷,因此如何实现对滚动轴承的故障检测和识别具有重栗的意义。关键词:机械;滚动
2、轴承;故障诊断1 .绪论轴承故障诊断主要采用的手段是获取设备的振动信号、声发射信号、电磁信号、超声信号等,通过一定的手段从这些信号之中获得轴承的相关故障信息。通常所采集得到的信号不能直接作为模式识别工具的输入数据,因为这些原始信号不仅数据量大同时对于轴承所处的工况比较敏感,需要对采集的数据进一步处理。从某种意义上讲,机械故障诊断可视为一个故障模式识别过程,模式识别技术的发展对于机械故障诊断技术的发展有着直接的影响。通过设计合理的模式分类器来进行故障模式识别是故障诊断的又一关键步骤。目前在轴承故障诊断领域主要采用统计模式识别方法和人工智能识别方法两大类。随着人工智能技术的不断发展,为解决滚动轴承
3、的故障诊断问题提供了新的手段和方法,本文主要针对滚动轴承故障模式识别方面的研究工作进行综述,并给出相关的研究趋势。2 .基于贝叶斯推理的故障模式识别技术首先采用小波包分解得到峭度特征量;然后,采用主成分分析法、核主成分分析法等降维方法选择合适的特征量,最后将选择的特征量送入到朴素贝叶斯分类器和线性判别分析模型(LDA)中,从而实现对轴承的故障进行分类。基丁红外图像分割的旋转机械故障诊断方法,首先采用图像分割算法对红外图像进行特征提取,然后采用特征融合算法进行故障特征融合,最后将融合后的特征量分别作为朴素贝叶斯分类器和支持向量机分类模型的输入量,对这两种识别模型进行训练并将训练后的模型用于故障识
4、别。实验结果表明该算法具有故障模式识别分类准确度高、速度快等优势。但由于朴素贝叶斯分类算法建立在属性条件独立性假设的基础之上,而此假设在实践过程常常并不满足,因此该方法在实际轴承故障诊断应用中具有一定的局限性。3 .基于神经网络的故障模式识别技术神经网络(ANN)作为重要的人工智能方法之一,因其具有通过多层网络结构建立输入和输出之间复杂的非线性关系的特征,因此在人工智能模式识别领域有着广泛的应用。基于神经网络的滚动轴承故障诊断就是利用神经网络建立故障信号的特征量和故障类型之间的映射关系从而实现对轴承的故障识别。为了进一步提高滚动轴承故障诊断精度,对BP神经网络权值采用蚁群优化算法进行优化学习,
5、试验结果表明,通过引入进化优化算法,使得所构建的BP神经网络模型具有更好的全局拟合性能,从而有效提高了该轴承故障诊断模型的精度。将小波变换融合到神经网络模型之中,构建了基于小波神经网络模型的轴承故障诊断模型,实验分析结果表明,小波神经网络模型较BP神经网络模型在滚动轴承故障诊断方面具有更快的收敛速度和精度。目前人工神经网络技术已经作为一种应用广泛的模式识别技术,但是由于该模型存在样本依赖性、网络结构难以确定等困难,还需要进一步深入研究提升神经网络的轴承故障诊断精度。4 .基于支持向量机的故障模式识别技术在实际应用中,常常面对有数据而又缺乏理论模型的情况,此时统计就是最基本的一种分析手段。传统统
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 故障诊断技术 中国 石油大学 故障诊断 技术 作业 参考答案
