生物数学模型第一讲数学模型与生物数学.ppt
《生物数学模型第一讲数学模型与生物数学.ppt》由会员分享,可在线阅读,更多相关《生物数学模型第一讲数学模型与生物数学.ppt(26页珍藏版)》请在第壹文秘上搜索。
1、 1 1 数学模型与生物数学数学模型与生物数学1.1 从现实对象到数学模型从现实对象到数学模型1.2 数学建模的重要意义数学建模的重要意义1.3 数学建模示例:药物中毒施救数学建模示例:药物中毒施救1.4 数学建模的基本方法和步骤数学建模的基本方法和步骤1.5 数学模型的特点和分类数学模型的特点和分类1.6 生物数学模型的内涵与分支生物数学模型的内涵与分支玩具、照片、飞机、火箭模型玩具、照片、飞机、火箭模型 实物模型实物模型水箱中的舰艇、风洞中的飞机水箱中的舰艇、风洞中的飞机 物理模型物理模型地图、电路图、分子结构图地图、电路图、分子结构图 符号模型符号模型模型模型是为了一定目的,对客观事物的
2、一部分是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的进行简缩、抽象、提炼出来的原型原型的替代物的替代物.模型模型集中反映了集中反映了原型原型中人们需要的那一部分特征中人们需要的那一部分特征.1.1 从现实对象到数学模型从现实对象到数学模型我们常见的模型我们常见的模型你碰到过的数学模型你碰到过的数学模型“航行问题航行问题”用用 x 表示船速,表示船速,y 表示水速,列出方程:表示水速,列出方程:75050)(75030)(yxyx答:船速为答:船速为20km/h. .甲乙两地相距甲乙两地相距750km,船从甲到乙顺水航行需,船从甲到乙顺水航行需30h,从乙到甲逆水航行需从乙到甲逆水
3、航行需50h,问船的速度是多少,问船的速度是多少?x=20y =5求解求解航行问题航行问题建立数学模型的基本步骤建立数学模型的基本步骤 作出简化假设(船速、水速为常数)作出简化假设(船速、水速为常数) 用符号表示有关量(用符号表示有关量(x, y分别表示船速和水速)分别表示船速和水速) 用物理定律(匀速运动的距离等于速度乘以用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程)时间)列出数学式子(二元一次方程) 求解得到数学解答(求解得到数学解答(x=20, y=5) 回答原问题(船速回答原问题(船速为为20km/h)数学模型数学模型 (Mathematical Model
4、) 和和数学建模(数学建模(Mathematical Modeling)对于一个对于一个现实对象现实对象,为了一个,为了一个特定目的特定目的,根据其根据其内在规律内在规律,作出必要的,作出必要的简化假设简化假设,运用适当的运用适当的数学工具数学工具,得到的一个,得到的一个数学表述数学表述. .建立数学模型的全过程建立数学模型的全过程(包括表述、求解、解释、检验等)(包括表述、求解、解释、检验等)数学模型数学模型数学数学建模建模1.2 数学建模的重要意义数学建模的重要意义 电子计算机的出现及飞速发展电子计算机的出现及飞速发展. 数学以空前的广度和深度向一切领域渗透数学以空前的广度和深度向一切领域
5、渗透.数学建模作为用数学方法解决实际问题的第一步,数学建模作为用数学方法解决实际问题的第一步,越来越受到人们的重视越来越受到人们的重视. 在一般工程技术领域在一般工程技术领域, 数学建模仍然大有用武之地数学建模仍然大有用武之地. 在高新技术领域在高新技术领域, 数学建模几乎是必不可少的工具数学建模几乎是必不可少的工具. 数学进入一些新领域,为数学建模开辟了许多处女地数学进入一些新领域,为数学建模开辟了许多处女地.“数学是一种关键的、普遍的、可以应用的数学是一种关键的、普遍的、可以应用的技术技术”. 数学数学“由研究到工业领域的由研究到工业领域的技术转化技术转化,对加强,对加强经济竞争力具有重要
6、意义经济竞争力具有重要意义”. “计算和建模计算和建模重新成为中心课题,它们是数学重新成为中心课题,它们是数学科学技术转化的主要途径科学技术转化的主要途径” .数学建模的重要意义数学建模的重要意义数学建模的具体应用数学建模的具体应用 分析与设计分析与设计 预报与决策预报与决策 控制与优化控制与优化 规划与管理规划与管理数学建模计算机技术知识经济知识经济如虎添翼如虎添翼场景场景 如何施救药物中毒如何施救药物中毒两位家长带着孩子急匆匆来到医院急诊室两位家长带着孩子急匆匆来到医院急诊室.诉说两小时前孩子一次误吞下诉说两小时前孩子一次误吞下11片片治疗哮喘病、剂量治疗哮喘病、剂量100mg/片片的氨茶
7、碱片,已出现呕吐、头晕等不良症状的氨茶碱片,已出现呕吐、头晕等不良症状. 按照药品使用说明书,氨茶碱的每次用量成人是按照药品使用说明书,氨茶碱的每次用量成人是100200mg ,儿童是,儿童是35 mg/kg.过量服用可使血药浓度过量服用可使血药浓度(单位血液容积中的药量单位血液容积中的药量)过高,过高,100g/ml浓度会出现浓度会出现严重中毒严重中毒, 200g/ml浓度可致命浓度可致命. 医生需要判断:孩子的血药浓度会不会达到医生需要判断:孩子的血药浓度会不会达到100200 g/ml;如果会达到,应采取怎样的;如果会达到,应采取怎样的紧急施救紧急施救方案方案. 1.3 数学建模示例数学
8、建模示例调查与分析调查与分析转移率转移率正比于正比于x排除率排除率正比于正比于y胃肠道胃肠道血液系统血液系统口服药物口服药物体外体外认为血液系统内药物的分布,即血药浓度是均匀的,认为血液系统内药物的分布,即血药浓度是均匀的,可以将血液系统看作一个房室,建立可以将血液系统看作一个房室,建立“一室模型一室模型” .药量药量x(t)药量药量y(t)血液系统对药物的吸收率血液系统对药物的吸收率 (胃肠道到血液系统的转移胃肠道到血液系统的转移率率) 和排除率可以由和排除率可以由半衰期半衰期确定确定.半衰期半衰期可以从药品说明书上查到可以从药品说明书上查到. 通常,血液总量约为人体体重的通常,血液总量约为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 生物 数学模型 第一 数学