生物统计学6.ppt
《生物统计学6.ppt》由会员分享,可在线阅读,更多相关《生物统计学6.ppt(91页珍藏版)》请在第壹文秘上搜索。
1、在实际工作中经常会遇到两种因素共同影响试验结果的情况在实际工作中经常会遇到两种因素共同影响试验结果的情况每一观测值都是某一特定温度与光照条件共同作用的结果。每一观测值都是某一特定温度与光照条件共同作用的结果。温度光照B1B2BcA1A1 B1A1B2A1 BcA2A2 B1A2B2A2 BcArAr B1ArB2Ar Bc第三节第三节二因素方差分析二因素方差分析定义:是指对试验指标同时受到两个试验定义:是指对试验指标同时受到两个试验因素作用的试验资料的方差分析。因素作用的试验资料的方差分析。固定模型固定模型二因素都是固定因素二因素都是固定因素随机模型随机模型二因素均为随机因素二因素均为随机因素
2、混合模型混合模型一个因素是固定因素,一个因素是固定因素,一个因素是随机因素一个因素是随机因素二因素方差分析二因素方差分析主效和互作主效和互作主效应主效应(main effectmain effect):各试验因素的相对独立作用各试验因素的相对独立作用互作互作(interactioninteraction):某一因素在另一因素的不同水平上所产生的效应不某一因素在另一因素的不同水平上所产生的效应不同。同。 简单效应简单效应 在某因素同一水平上, 另一因素不同水平对试验指标的影响称为简单效应。简单效应实际上是特简单效应实际上是特殊水平组合间的差数。殊水平组合间的差数。表表11-111-1日粮中加与不
3、加赖、蛋氨酸雏鸡增重日粮中加与不加赖、蛋氨酸雏鸡增重(g)(g)A1A2A2-A1平均平均B14704722471B248051232496B2-B1104025平均平均47549217主效应主效应 由于因素水平的改变而引起的平均数的改变量称为主效应。主效应。 如表,当A因素由A1水平变到A2水平时,A因素的主效应主效应为A2水平的平均数减去A1水平的平均数。即 A因素的主效应=492-475=17同理 B因素的主效应=496-471=25主效应也就是简单效应的平均主效应也就是简单效应的平均,如(32+2)2=17 , (40+10)2=25A1A2A2-A1平均平均B14704722471B
4、248051232496B2-B1104025平均平均47549217交互作用交互作用( (互作,互作,interaction) ) 在多因素试验中, 一个因素的作用要受到另一个因素的影响,表现为某一因素在另一因素的不同水平上所产生的效应不同,或者说,某一因素的简单效应随着另一因素水平的变化而变化时,则称该两因素存在交互作用。显而易见,A的效应随着B因素水平的不同而不同,反之亦然。我们说A、B两因素间存在交互作用,记为AB。A1A2A2-A1平均平均B14704722471B248051232496B2-B1104025平均平均47549217互作效应可由 (A1B1+A2B2-A1B2-A2
5、B1)/2来估计。 上表中的互作效应为: (470+512-480-472)/2=15我们把具有正效应的互作称为正交互作用(协同作用)正交互作用(协同作用);把具有负效应的互作称为负交互作用(拮抗作用)负交互作用(拮抗作用);互作效应为零则称无交互作用无交互作用。没有交互作用的因素是相互独立的因素,此时,不论在某一因素哪个水平上,另一因素的简单效应是相等的。因素间的交互作用显著与否关系到主效应的利用价值因素间的交互作用显著与否关系到主效应的利用价值二因素间是否存在交互作用有专门的统计判断方法,二因素间是否存在交互作用有专门的统计判断方法,有时也可根据专业知识判断。有时也可根据专业知识判断。如果
6、交互作用如果交互作用显著显著,则各因素的效应就,则各因素的效应就不能累加不能累加,最优,最优处理组合的选定应根据处理组合的选定应根据各处理组合的直接表现选定各处理组合的直接表现选定。有时交。有时交互作用相当大,甚至可以忽略主效应。互作用相当大,甚至可以忽略主效应。如果交互作用如果交互作用不显著不显著,则各因素的效应可以,则各因素的效应可以累加累加,各因,各因素的素的最优水平组合起来最优水平组合起来,即为最优的处理组合。,即为最优的处理组合。二因素方差分析二因素方差分析无重复观测值的二因素方差分析无重复观测值的二因素方差分析具有重复观测值的二因素方差分析具有重复观测值的二因素方差分析无重复观测值
7、的二因素方差分析无重复观测值的二因素方差分析依据经验或专业知识,判断二因素无交依据经验或专业知识,判断二因素无交互作用时,每个处理可只设一个观测值,即互作用时,每个处理可只设一个观测值,即假定假定A A因素有因素有a a各水平,各水平,B B因素有因素有b b个水平,每个水平,每个处理组合只有一个观测值。个处理组合只有一个观测值。无重复观测值的二因素方差分析无重复观测值的二因素方差分析因素因素A A因素因素B B总和总和T Ti i. .平均数平均数B B1 1B B2 2B Bb bA A1 1x x1111x x1212x x1b1bT T1 1. .A A2 2x x2121x x222
8、2x x2b2bT T2 2. .A Aa ax xa1a1x xa2a2x xababT Ta a. .总和总和T.T.j jT.T.1 1T.T.2 2T.T.b bT T平均数平均数.ix.1x.2x.axxjx.1. x2. xbx.无重复观测值的二因素分组资料模式无重复观测值的二因素分组资料模式二因素方差分析的线性模型二因素方差分析的线性模型因素间不存在交互作用,所以二因素方差因素间不存在交互作用,所以二因素方差分析观测值的线性模型是分析观测值的线性模型是xij = +i +j +iji 和j 是A因素和B因素的效应,可以是固定的,也可以是随机的,且,ij是随机误差,彼此独立且服从N
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 生物 统计学