大学微积分课件.ppt
《大学微积分课件.ppt》由会员分享,可在线阅读,更多相关《大学微积分课件.ppt(98页珍藏版)》请在第壹文秘上搜索。
1、 定积分第一节 定积分的概念与性质abxyo? A曲边梯形由连续曲线曲边梯形由连续曲线实例实例1 1 (求曲边梯形的面积)(求曲边梯形的面积))(xfy )0)( xf、x轴轴与与两两条条直直线线ax 、bx 所所围围成成.一、问题的提出)(xfy abxyoabxyo用矩形面积近似取代曲边梯形面积用矩形面积近似取代曲边梯形面积显然,小矩形越多,矩形总面积越接近显然,小矩形越多,矩形总面积越接近曲边梯形面积曲边梯形面积(四个小矩形)(四个小矩形)(九个小矩形)(九个小矩形)曲边梯形如图所示,曲边梯形如图所示,,1210bxxxxxabann 个分点,个分点,内插入若干内插入若干在区间在区间ab
2、xyoi ix1x1 ix1 nx;,11 iiiiixxxxxnba长度为长度为,个小区间个小区间分成分成把区间把区间,上任取一点上任取一点在每个小区间在每个小区间iiixx ,1 iiixfA )( 为为高高的的小小矩矩形形面面积积为为为为底底,以以)(,1iiifxx iniixfA )(1 曲边梯形面积的近似值为曲边梯形面积的近似值为iniixfA )(lim10 12,()max,(00)nxxxxxx当分割无限加细 记小区间的最大长度或者趋近于零或者时,曲边梯形面积为曲边梯形面积为实例实例2 2 (求变速直线运动的路程)(求变速直线运动的路程)思路思路:把整段时间分割成若干小段,每
3、小段上:把整段时间分割成若干小段,每小段上速度看作不变,求出各小段的路程再相加,便速度看作不变,求出各小段的路程再相加,便得到路程的近似值,最后通过对时间的无限细得到路程的近似值,最后通过对时间的无限细分过程求得路程的精确值分过程求得路程的精确值(1)分割)分割212101TtttttTnn 1 iiitttiiitvs )( 部分路程值部分路程值某时刻的速度某时刻的速度(2)求和)求和iinitvs )(1 (3)取极限)取极限,max21nttt iniitvs )(lim10 路程的精确值路程的精确值设设函函数数)(xf在在,ba上上有有界界,如如果果不不论论对对,ba在在,ba中任意插
4、入中任意插入若若干干个个分分点点bxxxxxann 1210把把区区间间,ba分分成成n个个小小区区间间,各各小小区区间间的的长长度度依依次次为为1 iiixxx,), 2 , 1( i,在在各各小小区区间间上上任任取取一点一点i (iix ),),作作乘乘积积iixf )( ), 2 , 1( i并作和并作和iinixfS )(1 ,二、定积分的定义定义定义怎怎样样的的分分法法, baIdxxf)(iinixf )(lim10 被积函数被积函数被积表达式被积表达式积分变量积分变量积分区间积分区间,ba也也不不论论在在小小区区间间,1iixx 上上点点i 怎样的取法,怎样的取法,和和S总趋于总
5、趋于确定的极限确定的极限I,在在区区间间,ba上上的的定定积积分分,记为记为积分上限积分上限积分下限积分下限积分和积分和注意:注意:(1) 积积分分值值仅仅与与被被积积函函数数及及积积分分区区间间有有关关, badxxf)( badttf)( baduuf)((3 3)当函数)当函数)(xf在区间在区间,ba上的定积分存在时,上的定积分存在时,而而与与积积分分变变量量的的字字母母无无关关.称称)(xf在区间在区间,ba上上可积可积. 当当函函数数)(xf在在区区间间,ba上上连连续续时时,定理定理1 1定理定理2 2 设函数设函数)(xf在区间在区间,ba上有界,上有界,称称)(xf在在区区间
6、间,ba上上可可积积. .且且 只只 有有 有有 限限 个个 第第 一一 类类 的的间间 断断 点点 , 则则)(xf在在三、存在定理区区间间,ba上上可可积积. ., 0)( xf baAdxxf)(曲边梯形的面积曲边梯形的面积, 0)( xf baAdxxf)(曲边梯形的面积曲边梯形的面积的负值的负值1A2A3A4A4321)(AAAAdxxfba 四、定积分的几何意义几何意义:几何意义:积取负号积取负号轴下方的面轴下方的面在在轴上方的面积取正号;轴上方的面积取正号;在在数和数和之间的各部分面积的代之间的各部分面积的代直线直线的图形及两条的图形及两条轴、函数轴、函数它是介于它是介于xxbx
7、axxfx ,)( 例例1 1 利用定义计算定积分利用定义计算定积分.102dxx 解解将将1 , 0n等等分分,分分点点为为nixi ,(ni, 2 , 1 )小区间小区间,1iixx 的长度的长度nxi1 ,(ni, 2 , 1 )取取iix ,(ni, 2 , 1 )iinixf )(1 iinix 21 ,12iniixx nnini121 niin12316)12)(1(13 nnnn,121161 nn0 xn dxx 102iinix 210lim nnn121161lim.31 五、定积分 的性质证证 badxxgxf)()(iiinixgf )()(lim10 iinixf
8、)(lim10 iinixg )(lim10 badxxf)(.)( badxxg badxxgxf)()( badxxf)( badxxg)(.(此性质可以推广到有限多个函数作和的情况)(此性质可以推广到有限多个函数作和的情况)性质性质1 1 babadxxfkdxxkf)()( (k为为常常数数).证证 badxxkf)(iinixkf )(lim10 iinixfk )(lim10 iinixfk )(lim10 .)( badxxfk性质性质2 2 badxxf)( bccadxxfdxxf)()(.补充补充:不论:不论 的相对位置如何的相对位置如何, 上式总成立上式总成立.cba,例
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学 微积分 课件