“双减”下变式教学“素养”中备考本源 论文.docx
《“双减”下变式教学“素养”中备考本源 论文.docx》由会员分享,可在线阅读,更多相关《“双减”下变式教学“素养”中备考本源 论文.docx(6页珍藏版)》请在第壹文秘上搜索。
1、“双减”下变式教学,“素养”中备考本源从一道课本习题的变式教学浅谈高三一轮复习的备考摘要:众所周知,高三一轮复习是对高中所学数学知识进行全面的梳理和复习,很多教师的做法是先梳理,再题海式训练,在教学效果上往往收效甚微,笔者认为要让学生在知识掌握上更加牢固,在思维上有所提升,还需要紧扣教材,充分利用变式,正本清源,调动学生解决问题的积极性.关键词:本源、变式、备考、素养、教学我想通过上课的教学片段来谈谈高三复习课的一些做法,以期抛砖引玉.一:教学片段问题:求证:超3X+(例题选自人教版选择性必修第二册P99综合应用第12题)学生一听是课本的习题,流露出不屑的表情,殊不知课本乃万变之源。很快学生给
2、出了不同的见解:移项进行构造与画图像分析师:分别让两位学生板书自己的解法,并进行总结:令x()=61.X-1,则f()=e-1.,易得最小值/(0)=0,故不等式成立.同时在多媒体上用几何画板给出了y=e与),=+1变式1:若对生1:顺着刚才的思路可以平移直线XIR都有e3+4成立,求),二+a的取值范围.。得到a的图象例题形式简单,学生很容易入手,紧接着我给出了变式1生2:仍可以进行移项构造新的函数评注:变式在例题的基础上变化了截距,学生很容易类比例题的方法得到结果。变式2:若R都有超3+成立,求的取值范围.4.学生思考这时突然一个学生举手示意:老师构造函数的范围无法求,不等式不会解。顺着他
3、的话题,我让他在黑板上板书解题过程。令fr=e-1.则/()=产。,.。0时,fr在R上单调递增,无最小值,当时,()在(-,1.n)上单调递减,在(In,。)上单调递增,1fx()mi=(1.n)=-In4-1.3O,做到这学生做不下去了。师:这是一个关于。的超越方程,目前我们解不出。的范围,其实只需再令g4()=/In,计算出g。()=g(1)=0,所以此时a=1评注:变式2在变式1的基础上变换了直线的斜率增加了难度,但解决问题的方法没有变化,同时在求解过程中有的学生不理解为何这里求得的是ga的最大值,为什么不是最小值啊,其实这里是一个存在性问题.变式3:若R都有*3r+成立,求的取值范围
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- “双减”下变式教学,“素养”中备考本源 论文 双减 下变式 教学 素养 备考 本源
![提示](https://www.1wenmi.com/images/bang_tan.gif)