数学的发展史及数学本身的美.pptx
《数学的发展史及数学本身的美.pptx》由会员分享,可在线阅读,更多相关《数学的发展史及数学本身的美.pptx(40页珍藏版)》请在第壹文秘上搜索。
1、数学发展史及数学的价值数学发展史及数学的价值海王星的发现海王星的发现 海王星是太阳系最远的行星之一,是根据力学法则,通过数学计算,于1846年发现的天文学家阿达姆斯和勒未累分析天王星运功的不规律性,应该是受到另外一颗行星的引力作用而产生的,他们计算出这个行星所处的位置观察员果然从望远镜中发现了这颗新的行星,这颗新的行星就是海王星电磁波的发现电磁波的发现 英国物理学家麦克斯韦(Maxwell)概括了由实验建立起来的电磁现象规律,以方程的形式表述出来,通过纯数学的方法,推导出电磁波的存在,且以光速传播着这一学说奠定了全部无线电技术的基础数学的本质 数学是反映现实世界的,产生于人类的实际需要数学最初
2、概念与原理的建立,是以经验为基础的长期历史发展的结果这深刻地道出了数学的本质 数学概念是从大量不同类型的实际问题中提炼概括出来的,它只保留了这些实际问题的共同的空间形式和量的关系,舍弃掉其他一切具体性质;是独立于这些实际问题的抽象概念这些实际问题只是纯数学概念的特例而已生产、科学、技术的进步促进了数学理论的发展,数学理论的发展又促进了生产、科学、技术的进步数学的三个特性 数学数学的的抽象性抽象性 数字是抽象的,量是抽象的,空间是抽象的,一切数学概念是抽象的,数学的方法也是抽象的抽象性在简单的数字运其中就己体现出来比如两个抽象数字相乘,我们并不关心是孩子的数目乘以苹果的数目,还是苹果的数目乘以水
3、果的单价几何中的直线只留下在一定方向的延伸的意义,而不是拉紧了的绳索 数学数学的精确性的精确性 数学的精确性,确切地说是指逻辑的严格性和结论的确定性数学推理和论断证明对于每个了解它的人来说,都是确定无疑和无可争辩的这点对于其他学科影响很大,以致有些学科中的理论,如果不能上升到用数学模型表达就不能令人信服 数学数学的广泛的广泛应用性应用性 数学的广泛应用性是任何其他学科所不能比拟的几乎所有学科都或多或少地应用着数学天气预报、地震预报离不开数学;电影电视中引人入胜的动画制作,离不开数学;经济学离不开数学;力学、物理学以及天文学上的定律就是用数学公式的形式来描述的。过去化学和生物学与数学联系较少,现
4、在也需要借助数学来发展自己农业方向要想提高农产品的产量和质量,就需要应用试验设计和优选法;兴修水利,防止堤坝渗水则需用到更高深的数学知识没有数学的发展,卫星就上不了天;没有数学的发展,人类就不可能遨游太空数学的发展史数学萌芽时期数学萌芽时期(公元前公元前6世纪以前世纪以前) 公元前一千多年,人类历史从铜器时代过渡到铁器时代,生产力大大提高了随着社会财富的增加,促进了商业贸易的发展出于社会经济生活的需要,人们越来越多地要计算产品的数量和劳动时间的长短,测量建筑物的大小,丈量土地的面积等人类在长期的生产实践中,逐渐形成了数的概念,产生了关于数的运算方法,几何学也有了初步发展 在这个阶段,人类虽然积
5、累了许多数学知识,但这些知识只是片断的,零碎的,还没有形成严整的体系,缺乏逻辑推理,尚不见有命题的证明 初等数学初等数学时期(公元前时期(公元前6世纪至世纪至17世纪中叶)世纪中叶) 公元前六七世纪,地中海一带成为文化昌盛地区,在生产、商业、航海以及社会政治生活发展的影响下,研究自然界的兴趣增加了,探索客观现实及其发展规律的愿望,逐渐代替了旧的宗教神话的世界观,这时在数学方面已积累了大量资料,有待进一步去整理和深刻化一些希腊学者开始尝试对命题加以证明,所谓证明,就是借助一些真实性已经确定的命题去论证某一命题真实性的逻辑推理过程 证明命题是希腊几何学的基本精神,是数学发展史上一件大事,从此,数学
6、由具体的实验的阶段过渡到抽象的理论的阶段,数学经过这样根本性的变革,逐渐形成了一门独立的演绎的科学这便是数学发展第二个阶段的开始之后,初等几何、算术、初等代数和三角学逐渐形成为相互独立的科目这些科目所研究的对象都是常量,称之为初等数学亚历山大里亚的欧几里得,古希腊数学家,被称为“几何之父”。他活跃于托勒密一世(公元前323年前283年)时期的亚历山大里亚,他最著名的著作几何原本是欧洲数学的基础,提出五大公设,发展欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品,是几何学的奠基人 阿基米德(公元前287年公元前212年),古希腊哲学家
7、、数学家、物理学家。出生于西西里岛的叙拉古。 他利用“逼近法”算出球面积、球体积、抛物线、椭圆面积,后世的数学家依据这样的“逼近法”加以发展成近代的微积分。他更研究出螺旋形曲线的性质,现今的“阿基米德螺线”曲线,就是为纪念他而命名。另外他在恒河沙数一书中,他创造了一套记大数的方法,简化了记数的方式。 变量变量数学时期(数学时期(17世纪中叶至世纪中叶至19世纪世纪20年代)年代) 16至17世纪,欧洲封建社会开始解体,资本主义兴起,生产力大大解放工场手工业蓬勃发展且向机器生产过渡,促使科学技术和数学急速地向前发展例如在航海方面,为了确定船只的位置,要求更加精密的天文观测;在军事方面,弹道学成为
8、研究的中心课题;准确的时计的制造,吸引着许多优秀的科学家;堤坝的修筑,行星的椭圆轨道理论等,都需要很多复杂的计算初等数学已经不能满足需要了,在数学研究中引入变量与函数的概念是很自然的发展趋势 从此,数学进入了第三个发展阶段变量数学时期这一时期和上一个时期的区别在于:上一个时期用静止的孤立的方法研究客观世界,这一时期则用运动的和变化的观点去探索事物的内在联系、变化和发展;辩证法进入了数学。 变量数学时期,以笛卡儿(Descartes,15961650)的解析几何学的建立为起点,接着牛顿(Newton,16421727)和莱布尼茨(Leibniz, 16461716)创立了微积分学,亦称数学分析。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 发展史 本身