高级人工智能计算智能.pptx
《高级人工智能计算智能.pptx》由会员分享,可在线阅读,更多相关《高级人工智能计算智能.pptx(82页珍藏版)》请在第壹文秘上搜索。
1、人工智能人工智能本章内容本章内容 概述概述 演化计算演化计算 模糊模糊计算计算本章内容本章内容 概述概述 演化计算演化计算 模糊模糊计算计算 计算计算智能智能(Computational Intelligence,CI) 计算计算智能是在智能是在神经网络(神经网络(Neural Networks,NN)、演化计算、演化计算(Evolutionary Computation,EC)及模糊系统()及模糊系统(Fuzzy System,FS)这这3个领域发展相对成熟的基础上形成的一个统一个领域发展相对成熟的基础上形成的一个统一的学科概念的学科概念。 什么什么是计算智能是计算智能如果一个系统仅处理低层
2、的数值数据,含有模式识别部件,如果一个系统仅处理低层的数值数据,含有模式识别部件,没有使用人没有使用人工智能意义上的知识工智能意义上的知识,且具有,且具有计算适应性、计算容错力、接近人的计算计算适应性、计算容错力、接近人的计算速度速度和和近似于人的误差率近似于人的误差率这这4 4个特性,则它是计算智能的。个特性,则它是计算智能的。 神经网络神经网络是一种对人类智能的是一种对人类智能的结构模拟结构模拟方法,它是通过方法,它是通过对大量人工神经元的广泛并行互联,构造人工神经网络对大量人工神经元的广泛并行互联,构造人工神经网络系统去模拟生物神经系统的智能机理。系统去模拟生物神经系统的智能机理。 演化
3、演化计算计算是一种对人类智能的是一种对人类智能的演化模拟演化模拟方法,它是通过方法,它是通过对生物遗传和演化过程的认识,用进化算法去模拟人类对生物遗传和演化过程的认识,用进化算法去模拟人类智能的进化规律的。智能的进化规律的。 模糊模糊计算计算是一种对人类智能的是一种对人类智能的逻辑模拟逻辑模拟方法,它是通过方法,它是通过对人类处理模糊现象的认知能力的认识,用模糊逻辑去对人类处理模糊现象的认知能力的认识,用模糊逻辑去模拟人类的智能行为的。模拟人类的智能行为的。本章内容本章内容 概述概述 演化计算演化计算 模糊模糊计算计算7演化计算(演化计算(Evolutionary Evolutionary C
4、omputation,ECComputation,EC):):在在基因和种群层次上模拟自然界生物进化过程与机制的问题基因和种群层次上模拟自然界生物进化过程与机制的问题求解技术和计算模型求解技术和计算模型。思想思想源于源于生物遗传学生物遗传学和和适者生存适者生存的的自然规律自然规律基于基于达尔文(达尔文(DarwinDarwin)的进化论和孟德尔()的进化论和孟德尔(MendelMendel)的遗传)的遗传变异理论变异理论典型代表:典型代表:遗传遗传算法(算法(Genetic AlgorithmGenetic Algorithm,GAGA)进化进化策略(策略(Evolutionary Evolu
5、tionary Strategy,ESStrategy,ES)进化进化规划(规划(Evolutionary Evolutionary Programming,EPProgramming,EP)遗传遗传规划(规划(Genetic Genetic Programming,GPProgramming,GP)演化演化计算计算 达尔文的达尔文的自然选择学说自然选择学说是一种被人们广泛接受的生物进是一种被人们广泛接受的生物进化化学说:学说:生物要生存下去,就必须进行生存斗争。具有有利变异的个体容易存活有利变异的个体容易存活下来,并且有更多的机会将有利变异传给后代;具有不利变异的个体就容易不利变异的个体就容
6、易被淘汰被淘汰,产生后代的机会也少的多。:自然选择。遗传和变异遗传和变异是决定生物进化的内在因素。(相对稳定+新的物种)演化演化计算计算9 孟德尔基因遗传原理孟德尔基因遗传原理遗传以密码方式存在细胞中,并以基因基因形式包含在染色染色体体内。每个基因有特殊的位置并控制某种特殊性质;所以,每个基因产生的个体对环境具有某种适应性。基因突变和基因杂交基因突变和基因杂交可产生更适应于环境的后代。演化演化计算计算10一一种模拟自然界生物进化过程与机制进行种模拟自然界生物进化过程与机制进行问题求解的自组织、自适应的问题求解的自组织、自适应的随机搜索随机搜索技术技术。 演化规则:演化规则:“物竞天择、适者生存
7、物竞天择、适者生存” 演化操作:演化操作:演化计算及其生物学基础演化计算及其生物学基础 遗传遗传算法的基本思想是算法的基本思想是从初始种群出发,采用优胜劣汰、适从初始种群出发,采用优胜劣汰、适者生存的自然法则选择个体,并通过杂交、变异来产生新一者生存的自然法则选择个体,并通过杂交、变异来产生新一代种群,如此逐代进化,直到满足目标代种群,如此逐代进化,直到满足目标为止为止 基本概念:基本概念:种群种群(Population):多个备选解的集合。个体(个体(Individual):):种群中的单个元素,通常由一个用于描述其基本遗传结构的数据结构来表示。例如,长度为L 的0、1串染色体染色体(Chr
8、omos):对个体仿照基因编码进行编码后所得到的编码串。染色体中的每一位称为基因,染色体上由若干个基因构成的一个有效信息段称为基因组。遗传算法遗传算法 基本概念:基本概念:适应度(适应度(Fitness)函数)函数:用来对种群中各个个体的环境适应性进行度量的函数,函数值是遗传算法实现优胜劣汰的主要依据遗传操作(遗传操作(Genetic Operator):作用于种群而产生新的种群的操作。 选择选择(Selection) 交叉交叉(Cross-over) 变异变异(Mutation) 遗传算法遗传算法遗传遗传算法主要由算法主要由染色体编码、初始种群设定、适应度函数设定、遗传操作染色体编码、初始种
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高级 人工智能 计算 智能