第八章散射理论.docx
《第八章散射理论.docx》由会员分享,可在线阅读,更多相关《第八章散射理论.docx(13页珍藏版)》请在第壹文秘上搜索。
1、第八章散射理论本章介绍:前面讨论了薛定田方程中的束缚态问题。而对于能量连续的散射态,能级间隔趋于零,因此一般说来,不能用微扰论来处理。另一方面,微观粒子之间的散射或称碰撞过程的研究,对于了解许多实验现象十分重要,所以,建立一套散射理论无论从实验上看,还是使理论更加完善上看,都是完全必要的。本章将分别就弹性散射和非弹性散射,按入射粒子的能量高低,分别建立不同的散射理论,并介绍了分波法和玻恩近似两种处理散射问题的近似方法。8.1散射截面法应用实例8.4玻恩近似8.5质心坐标系与实验坐标系86全同粒子的8.1散射截面在经典力学中,弹性散射是按照粒子在散射过程中,同时满足动量守恒和能量守恒来定义的。在
2、量子力学中,一般说来,除非完全略去粒子之间的相互作用势能,否则,动量将不守恒。因此,在量子力学中,不可能按经典力学的公式来定义弹性散射。在量子力学中,如果在散射过程中两粒子之间只有动量交换,粒子由内部运动状态决定,则这种碰撞过程成为弹性散射。如果在散射过程中粒子内部运动状态有所变化,如激发、电离等则称为非弹性散射。本章只讨论弹性散射问题。考虑一束入射粒子流向粒子A射来,取粒子流入射方向为Z轴。A为散射中心。为讨论方便起见,假定A的质量比入射粒子大得多,由碰撞引起的A的运动可以忽略。应当指出,散射过程是两体问题。因为它涉及两个互相散射的粒子。对于两体问题,最好的处理方法是采用质心坐标系。因为在质
3、心坐标系中,一个两体问题将被归结为一个粒子因为与质心的相互作用而被散射。另一粒子的运动可对称给出。从而归结为单体问题。如果散射中心粒子A的质量比入射粒子大得多,可以认为质心就在A上,这样就使问题处理简单多了。如图所示,入射粒子受人的作用而偏离原来的运动方向,发生散射。图中八角为散射粒子的方向与入射粒子方向的夹角,称为散射角。单位时间内散射到面积元dS上的粒子数dn应与dS成正比,而与dS到A点的距离/的平方成反比,即与dS对A所张的立体角成比例,而T=4。同时,击还应与入射粒子r流强度N成正比。粒子流强度:垂直于入射粒子流前进方向去一单位面积S。,单位时间内通过5。的粒子数。于是加MC以双夕。
4、)表示这个比例关系中的比例系数,在一般情况下,它与观察方向(。,。)有关,因而上式可写为册q3,0NdQ当强度N固定时,单位时间内散射到(。,)方向的粒子数d由4(0,0)决定。它与入射粒子、散射中心的性质以及它们只见的相互作用和相对动能有关。它的物理意义:一个入射粒子经散射后,散射到(夕方向单位立体角的几率。它的量纲可由(8L3)式中其他各量的量纲得出血=,W=吉-L=L2(8.1.4)即q(,(p)具有面积的量纲。我们称q(仇)为微分散射截面。NdQt如果在垂直与入射粒子流方向区面积q(,)d豆,则单位时间内穿过这个面积的粒子数等于d。将q(e,)dC对所有的方向积分,得Q=q(,)d=J
5、Jq(y)sindd(8.1.5)。称为总散射截面。上述微分散射截面和总散射截面的定义,在量子力学和经典力学中同样适用。下面我们讨论量子力学中如何由解薛定潮方程来定散射截面。取散射中心为坐标原点,用U(r)表示入射粒子与散射中心之间的相互作用势能,则体系的薛定将方程为-2+U=E(8.1.6)式中是入射粒子质量,E是它的能量,为方便,令2m=与,v=-=,V(r)=t(r)(8.1.7)则(8.1.6)式可mm改写为VV+2-丫(一)池=O我们观察被散射粒子都是在离开散射中心很远的地方,所以只需讨论8时”的行为就够了。假设,一8时,U(r)0,即粒子在远离散射中心时,两者之间的相互作用趋于零。
6、这样,在8的地方,波函数应由两部分组成:一部分是描述入射粒子的平面波%=Aeii=t另一部分是描述散射粒子的球面波函数匕=/(a0)0由+匕(8.1.9)这个波是由散射中心向外传播的,这里考虑的是弹性散射。所以散射波的能量没有改变,即波矢攵的数值不变。上式中了(夕仅是。的函数与/无关。取A=I,则帆/,这表明每单位体积只有一个入射粒子。入射波的几率流密度屋=饕,;=-w-.V1=V子流强度,即(8.1.3)的N散射波的几率流密度是2tn匕垩,;华口六彳考卜52drorJ2mr)r单位内穿过球面上单位时间的粒子数,故单位时间穿过面积dS的粒子数是M=J心=Tf(6MdS=币SMfdC因为y=N,
7、比较(8.1.12)与(8.1.3)两式,可知微分截面是MeM=I,(a0)(8.1.13)所以知道了/(。,,就可以求得夕(夕,9)。/(夕磔称为散射振幅。的具体形式通过求薛定将方程(8.L8)的解并要求在r8时解具有(8L9)的形式而得出。下面几节我们将具体讨论如何求方程(8.L8)的解。8.2分波法本节我们介绍在粒子受到中心力场的弹性散射时,从解方程(8.L8)而求出散射截面的一种方法,后面还将介绍另一种方法,这两种方法各有各的适用范围。在中心力场的情况下,方程(818)可改写为力“+伙2-V(A)=O(8.2.1)取沿粒子入射方向并通过散射中心的轴线为极轴,这个轴是我们所讨论问题的旋转
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第八 散射 理论