2022铁死亡的发生机制及在脓毒症多器官功能障碍中的作用(全文).docx
《2022铁死亡的发生机制及在脓毒症多器官功能障碍中的作用(全文).docx》由会员分享,可在线阅读,更多相关《2022铁死亡的发生机制及在脓毒症多器官功能障碍中的作用(全文).docx(11页珍藏版)》请在第壹文秘上搜索。
1、2022铁死亡的发生机制及在脓毒症多器官功能障碍中的作用(全文)脓毒症是机体对感染诱发的免疫反应失调引起的多器官功能障碍综合征,住院病死率可达20%,严重危害人类健康,目前尚无有效的治疗手段1。对于脓毒症的发病机制研究主要集中在器官微循环障碍、异常免疫反应导致细胞线粒体功能障碍及诱导细胞死亡等方面2,3,但脓毒症发病的确切机制尚无定论。近年来越来越多研究关注到微量元素代谢失调在脓毒症发病中的作用4。铁死亡是在2012年由Dixon等首次提出,本质是一种细胞内铁过载触发脂质过氧化所引起的一种程序性细胞死亡,在形态学、生化和遗传学方面都有不同于凋亡、自噬、坏死、焦亡等细胞死亡形式的独特表现。细胞发
2、生铁死亡后具有免疫原性,可以放大炎症反应造成更多细胞死亡,最终诱发多器官功能衰竭6。新近研究在肿瘤抑制、改善抗癌药物的心脏毒性及中枢神经系统退行性病变等多方面证明了铁死亡参与其发病7,8,9,但铁死亡在脓毒症多器官功能障碍方面的研究尚有限。本文拟对近年来国内外铁死亡的分子机制及其在脓毒症多器官功能障碍中可能的作用机制的研究进展做一综述,以期为脓毒症的诊断、评估、监测与治疗提供新的思路与策略。1铁死亡1.1 铁死亡的发生及调控过程铁死亡是细胞内铁依赖的致死性磷脂过氧化,涉及铁超载、活性氧(reactiveoxygenspecieszROS)生成、磷脂多不颗口脂肪酸增多等机制,可造成细胞膜完整性缺
3、失、脂质交联干扰细胞膜正常功能及氧化损伤大分子物质及细胞结构,最终引起细胞死亡10。铁死亡最终是通过磷脂氢过氧化物(phospho1.ipidhydroperoxides,P1.OOH)堆积导致11,12。调控铁死亡的通路包括依赖谷胱甘肽过氧化物酶(g1.utathioneperoxidase4,GPX4)的传统途径和不依赖GPX4的途径。前者为系统XC-谷胱甘肽(g1.utathione,GSH)-GPX4途径。此途径通过胱氨酸-谷氨酸反向转运蛋白摄取胞外的胱氨酸,在硫氧化蛋白还原酶1催化下生成半胱氨酸,进而合成GSH,参与GPX4介导的细胞中P1.OOH的还原,减轻脂质过氧化。不依赖GPX
4、4的途径为铁死亡抑制蛋白1(ferroptosissuppressorproteinI1FSP1.)泛酶系统、角鲨烯系统和二/四氢生物喋聆介导的脂质过氧化抑制系统,主要通过相应的还原反应、捕获内源性自由基等发挥抗氧化作用及抑制脂质过氧化10。1.2 铁在铁死亡中的作用铁是驱动细胞内脂质过氧化和铁死亡的重要部分。细胞内过量的铁累积可激活炎症反应及促进脂质过氧化反应,破坏细胞膜结构、蛋白质及DNA13o细胞内铁的来源主要有:细胞外铁通过转铁蛋白与转铁蛋白受体(transferrinreceptor,TFRC)结合通过内吞作用被转运入胞内或铁蛋白通过铁自噬的方式释放大量铁。而膜铁转运蛋白(ferro
5、portinzFpn)是唯一的铁转出蛋白,它可以通过减少细胞内铁的含量减轻铁死亡。大量研究证实,通过调控上述与铁转运相关的蛋白可调控细胞内铁死亡的发生:敲除Fpn,过表达TFRC可诱导细胞铁死亡14,15,16;而ferrostatin-1(Fer-I)可上调Fpn,降低细胞内铁含量,改善脂质过氧化和早期脑损伤17。铁蛋白重链1(ferritinheavychainI1FTH1.)是转铁蛋白的重要组成成分,它可通过发挥储铁功能而减少细胞内游离铁,也可与核受体辅助活化因子4(nuc1.earreceptorcoactivator4zNC0A4)结合通过铁自噬的方式降解铁蛋白释放大量铁,使胞质内F
6、e2+升高进一步激活线粒体膜跨膜蛋白的表达,将Fe2+转运至线粒体,引起线粒体脂质过氧化和死亡18。研究发现敲除NC0A4可减少铁自噬,使细胞对脂质过氧化及铁死亡更具抵抗力19,20。Tian等21在帕金森病(Parkinsonsdisease,PD)大鼠6-羟多巴胺(G-Hydroxydopaminez6-0HDA)模型中发现敲除大鼠嗜铝细胞瘤来源的PC-12细胞中的FTHI基因可显著抑制细胞活力,引起线粒体功能障碍。反之过表达FTH1.基因可以使铁自噬受损,NC0A4表达下降,抑制铁死亡。1.i等22进一步研究发现在大鼠6-0HDA诱导的PD模型中过表达miR-335可使FTH1.表达降低
7、,FTH1.是miR-335的直接靶点,miR-335通过靶向PD中的FTH1.促进铁死亡。1.3 系统XcGSH-GPX4途径与脂质过氧化胱氨酸/谷氨酸反向转运体位于细胞膜上,是由轻链(so1.utecarrierfami1.y7member11,S1.C7A11)和重链(SOIUtecarrierfami1.y3member2,S1.C3A2)组成的二硫键连接的异源二聚体,S1.C7A11是调控其活性的关键成分。在正常情况下,谷氨酸被转移出细胞,同时胱氨酸转入参与GSH的形成,预防铁死亡23。Erastin,柳氮磺口比咤(su1.fasa1.azine,SAS细胞外高浓度谷氨酸、肿瘤抑制因
8、子P53、BRCA1.相关蛋白1(BAP1.)和RAS选择性致死性小分子等可通过抑制系统XC-的S1.C7A11亚基减少胱氨酸摄取或抑制系统XC-下游的GPX4引发细胞铁依赖性氧化损伤及铁死亡24,25,26,27,28。这种氧化损伤可被去铁胺和铁抑素-1抑制。多不饱?口脂肪酸(po1.yunsaturatedfattyacidzPUFA)是细胞膜的组成部分,由于PUFA中较多的双键增加了其对氧化的敏感性,使其成为ROS攻击的主要目标。外源性给予单不饱和脂肪酸(monounsaturatedfattyacidzMUFA)可通过与PUFA竞争进入磷脂而有效地抑制Erastin诱导的铁死亡29。酰
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 死亡 发生 机制 脓毒症多 器官 功能障碍 中的 作用 全文