第14课二次函数及其图象精品教育.ppt
《第14课二次函数及其图象精品教育.ppt》由会员分享,可在线阅读,更多相关《第14课二次函数及其图象精品教育.ppt(40页珍藏版)》请在第壹文秘上搜索。
1、第14课 二次函数及其图象 1定义:定义:形如函数形如函数 叫做二次函数叫做二次函数2利用配方,可以把二次函数利用配方,可以把二次函数yax2bcc表示成表示成 .要点梳理要点梳理yax2bxc(其中其中a、b、c是常数,是常数,且且a0)ya 23图象与性质:图象与性质: 二次函数的图象是抛物线,当二次函数的图象是抛物线,当 时抛物线的开口时抛物线的开口 ,这,这时当时当 时,时,y的值随的值随x的增大而的增大而 ;当;当 时,时,y的值随的值随x的增大而的增大而 ;当;当x 时,时,y有有 .当当 时抛物线开口时抛物线开口 ,这时当,这时当 时,时,y的值随的值随x的增大而的增大而 ;当;
2、当 时,时,y的值随的值随x的增大而的增大而 ; 当当x 时,时,y有有 . 抛物线的对称轴是直线抛物线的对称轴是直线x ,抛物线的顶点,抛物线的顶点 是是 .a0向上向上x减小减小x增大增大最小值最小值a0 B. b0 Cc0 Dabc0 解析:当解析:当x1时,对应的点时,对应的点(1 , y)在在 第一象限内,第一象限内,yabc0.D4(2011威海威海)二次函数二次函数yx22x3的图象如图所示当的图象如图所示当y0时,时,自变量自变量x的取值范围是的取值范围是() A1x3 Bx1 Cx3 Dx3或或x3 解析:如图,可知解析:如图,可知x1或或3时,时, y0;当;当1x3时,时
3、,y0时,时,x的取值范围是的取值范围是1x0,抛物线有最低点,其坐标为,抛物线有最低点,其坐标为(1,2),选选B.B题型三利用二次函数解决实际应用题题型三利用二次函数解决实际应用题【例例3】 我市某大型酒店有包房我市某大型酒店有包房100间,在每天晚餐营业时间,每间,在每天晚餐营业时间,每间包房收包房费间包房收包房费100元时,包房便可全部租出;若每间包房收费元时,包房便可全部租出;若每间包房收费提高提高20元,则减少元,则减少10间包房租出,若每间包房收费再提高间包房租出,若每间包房收费再提高20元,元, 则再减少则再减少10间包房租出,以每次提高间包房租出,以每次提高20元的这种方法变
4、化下去元的这种方法变化下去 (1)设每间包房收费提高设每间包房收费提高x(元元),则每间包房的收入为,则每间包房的收入为y1(元元),但会,但会减少减少y2间包房租出,请分别写出间包房租出,请分别写出y1、y2与与x之间的函数关系式;之间的函数关系式; (2)为了投资少而利润大,每间包房提高为了投资少而利润大,每间包房提高x(元元)后,设酒店老板每后,设酒店老板每天晚餐包房总收入为天晚餐包房总收入为y(元元),请写出,请写出y与与x之间的函数关系式,求出之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由理由
5、解:解:(1)y1100 x,y2 x. (2)y(100 x)(100 x) x250 x10000 (x50)211250, 因为提价前包房费总收入为因为提价前包房费总收入为10010010000, 当当x50时,可获得最大包房收入时,可获得最大包房收入11250元,元, 因为因为1125010000,又因为每次提价为,又因为每次提价为20元,元, 所以每间房费应提高所以每间房费应提高40元或元或60元元 所以为了投资少而利润大,每间房费应提高所以为了投资少而利润大,每间房费应提高60元元探究提高探究提高 解决最值问题的关键是根据已知条件建立二次函数模型,解决最值问题的关键是根据已知条件建
6、立二次函数模型,利用二次函数的最大值或最小值来解利用二次函数的最大值或最小值来解知能迁移知能迁移3某商品的进价为每件某商品的进价为每件40元,售价为每件元,售价为每件50元,每个月元,每个月可卖出可卖出210件;如果每件商品的售价每上涨件;如果每件商品的售价每上涨1元,则每个月少卖元,则每个月少卖10件件(每件售价不能高于每件售价不能高于65元元)设每件商品的售价上涨设每件商品的售价上涨x元元(x为为正整数正整数),每个月的销售利润为,每个月的销售利润为y元元 (1)求求y与与x的函数关系式并直接写出自变量的函数关系式并直接写出自变量x的取值范围;的取值范围; (2)每件商品的售价定为多少元时
7、,每个月可获得最大利润?最每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?大的月利润是多少元? (3)每件商品的售价定为多少元时,每个月的利润恰为每件商品的售价定为多少元时,每个月的利润恰为2200元?元?根据以上结论,请你直接写出售价在什么范围时,每个月的利根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于润不低于2200元?元?解:解:(1)y(21010 x)(50 x40) 10 x2110 x2100(0 x15,且,且x为整数为整数) (2)y10(x5.5)22402.5. a100, 当当x5.5时,时,y有最大值有最大值2402.5. 0
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 14 二次 函数 及其 图象 精品 教育
