概率(高职班)知识点梳理汇总.docx
《概率(高职班)知识点梳理汇总.docx》由会员分享,可在线阅读,更多相关《概率(高职班)知识点梳理汇总.docx(12页珍藏版)》请在第壹文秘上搜索。
1、概率(高职班)第01节事件与概率(一)基础知识梳理:1 O事件的概念:(D事件:在一次试验中出现的试验结果,叫做事件。一般用大写字母A,B,C,表示。(2)必然事件:在一定条件下,一定会发生的事件。(3)不可能事件:在一定条件下,一定不会发生的事件(4)确定事件:必然事件和不可能事件统称为确定事件。(5)随机事件:在一定条件下,可能发生也可能不发生的事件。2 .随机事件的概率:(1)频数与频率:在相同的条件下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数A为事件A出现的频数,称/(八)=区为事件A出现的频率。n(2)概率:在相同的条件下,大量重复同一试验时,事件A发生的频率
2、会在某个常数附近摆动,即随机事件A发生的频率具有稳定性。这个常数叫做随机事件A的概率,记作P(4)。3 .概率的性质:必然事件的概率为1,不可能事件的概率为O,随机事件的概率为OP()1,必然事件和不可能事件看作随机事件的两个极端情形,4。事件的和的意义:事件A、B的和记作A+B,表示事件A和事件B至少有一个发生。5o互斥事件:在随机试验中,把一次试验下不能同时发生的两个事件叫做互斥事件。当A、B为互斥事件时,事件A+B是由“A发生而B不发生”以及“B发生而A不发生”构成的,因此当A和B互斥时,事件A+B的概率满足加法公式:P(A+B)=P(八)+P(B)(A、B互斥).一般地:如果事件A,4
3、,,A”中的任何两个都是互斥的,那么就说事件A,A”彼此互斥,此时,P(A+4+4)=P(八)+P(4)+P(Aw)o6 .对立事件:事件A和事件B必有一个发生的互斥事件叫A、B对立,即事件A、B不可能同时发生,但A、B中必然有一个发生.这时P(A+B)=P(八)+P(B)=1,即P(A+)=P(八)+P(八)=L当计算事件A的概手P(八)比较困难时,有时计算它的对立事件N的概率则要容易些,为此有P(八)=I-P(八).7 .事件与集合:从集合角度来看,A、B两个曼件互斥,则表示A、B这两个事件所含结果组成的集合的交集是空集.事件_A的对立事!牛入所含结果的集合正是全集U中由事件A所含结果组成
4、集合的补集,即AUN=U,A入=0。对立事件一定是互斥事件,但互斥事件不一定是对立事件.(二)典型例题分析:例L将一枚均匀的硬币向上抛掷10次,其中正面向上恰有5次是()A.必然事件B.随机事件C.不可能事件D.无法确定例2.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.至少有1个白球,都是白球B.至少有1个白球,至少有1个红球C.恰有1个白球,恰有2个白球D.至少有1个白球,都是红球例3.甲、乙两名围棋选手在一次比赛中对局,分析甲胜的概率比乙胜的概率高5%,和棋的概率为59%,则乙胜的概率为.(三)基础训练:1 .下列说法正确的是()A.任一事件的概率总在(
5、O,1)内B.不可能事件概率不一定为OC.必然事件的概率一定是1D.以上均不对2 .某地气象局预报说:明天本地降雨概率为80%,则下面解释正确的是()A.明天本地有80%的区域下雨,20%的区域不下雨B.明天本地下雨的机会是80%C.明天本地有80%的时间下雨,20%的时间不下雨D.以上说法均不正确3 .箱子中有2000个灯泡,随机选择100个灯泡进行测试,发现10个是坏的,预计整箱中有个坏灯泡。4 .对某电冰箱厂生产的电冰箱进行抽样检测数据如下表所示:抽取台数50100200300500100O优等品数4692192285479950则估计该厂生产的电冰箱优等品的概率为(四)巩固练习:1 .
6、把红、黑、蓝、白4张纸牌随机的分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是()A.对立事件B.不可能事件C.互斥但不对立事件D.以上答案都不对2 .下列四个命题中错误命题的个数是()(1)对立事件一定是互斥事件(2)若A,B是互斥事件,则P(八)+P(B)1(3)若事件A,B,C两两互斥,则P(八)+P(B)+P(C)=1(4)事件A,B满足P(八)+P(B)=1,则A,B是对立事件A.OB.1C.2D.33 .抛掷一枚质地均匀的骰子,事件A表示“所得点数是1、2”,事件B表示“所得点数大于4”,贝IJP(A+B)=.4 .某射手射击1次射中10环,9环,
7、8环,7环的概率分别是0.24,0.28,0.19,0.16,则这名射手射击1次,射中10环或9环的概率为,至多射中6环的概率是第02节古典概型(一)基础知识梳理:1 .基本事件:一次试验连同其中可能出现的每一个结果,称为一个基本事件基本事件是试验中不能再分的最简单的随机事件。基本事件有以下两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可表示成基本事件的和。2 .古典概型:具有以下两个特征的随机试验的概率模型称为古典概型。(D试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。3 .古典概型的概率计算公式:对于古典概型,若试验的所有基本事件数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率 高职 知识点 梳理 汇总
