最新版圆锥曲线专题17之9 曲线系方程.docx
《最新版圆锥曲线专题17之9 曲线系方程.docx》由会员分享,可在线阅读,更多相关《最新版圆锥曲线专题17之9 曲线系方程.docx(6页珍藏版)》请在第壹文秘上搜索。
1、专题2少林双截棍曲线系方程独孤九剑是风清扬传给令狐冲的绝门秘籍,不同于其他的招数,独孤九剑是根据对方的套路后发而至的套路,相当于无招胜有招,曲线系就相当于独孤九剑,有着无招胜有招的功效,牢牢抓住两对直线活动的轨迹就是圆锥曲线这一特点,只要是与点与斜率有关的都可以利用这一原理搞定,堪称圆锥曲线的无招胜有招.当然了本节前两讲有点大材小用的味道,或者说这种优势体现不明显(因为题目难度本身不大)后两节圆系和曲线系有着非常优势的体现,本书将利用2020全国一卷2018北京卷2020北京卷等几道真题详细说明这一点,利用平移后曲线系更是曲线系的神来之笔,采用先退后进的方法一举将这些题轻松拿下.第一饼直线系概
2、念:具有某种共同属性的一类直线的集合,称为直线系.它的方程称直线系方程.几种常见的直线系方程:(1)过已知点P(XO,%)的直线系方程y-%=A(X-Xo)(Z为参数).(2)斜率为Z的直线系方程y=h+方(少是参数).(3)与已知直线Ar+gy+C=0平行的直线系方程4r+3.v+2=0(4为参数).(4)与已知直线Ar+3),+C=O垂直的直线系方程8r-Ay+4=0(4为参数).(5)过直线(:AX+q-y+=0与/2:4%+4丁+。2=0交点的直线系方程为:1x+1y+C1+/(2x+y+C2)=0(/为参数)我们先来看看教材中的例题.引例1(必修2,2.1.4两条直线交点的例2).直
3、线/经过原点,且经过另两条直线2工+3尹8=0,4-、-1=0的交点,求直线1的方程.教材的方法为求出两条直线的交点,再求直线/.换成下面的变式:引例1变式.直线I经过点(2,1),且经过另两条直线lb+13y+8=0,8x-9y-1=0的交点.求直线/的方程.不难发现教材方法的问题是计算量偏大.此时,若采用直线系方程,即设所求直线1方程为:llx+13y+8+(8x-9y-l)=0,将x=2,y=1代入求出A的值为,回代即得直线/的方程.这就是利6用直线系解题的一种典型做法.【例1】(泉汾月考)过两直线4:2x-y+l=0,,2:x+3y-2=0的交点,且在两坐标轴上截距相等的直线方程可以为
4、()A.7x+7y+4=0B.7x+7j-4=0C.7x-7y+6=0D.7x-7y-6=0【例2】(长丰期末)己知直线方程/2x+3y-5=0与,2:3x+2y5=0,(1)求两直线的交点;(2)求经过交点,且与直线x+4y+3=0平行的直线方程.【例3】(重庆月考)(1)求经过点(2,3)且在两坐标轴上截距相等的直线方程;(2)求过宜线x-2y-3=0与2-3y-2=0的交点,且与7x+5y+1=0垂直的直线方程.第二稀圆系概念:具有某种共同属性的圆的集合,称为圆系.几种常见的圆系方程:(D同心圆系(x-%)2+(y-%)2=/,/、方为常数,厂为参数.(2)过两已知圆C:工(乂丁)=12
5、+),2+。俨+&),+=().和C2:f2(x,y)=x2+/+D2x+E2y-F2=0的交点的圆系方程为x2+y2-Dix+Ely+Fl+(x2+y2+D2x+E2y+F2)=O(-i)若见=一1时,变为(。-2)+(g-G)y+石一6=0,则表示过两圆的交点的直线.其中两圆相交时,此直线表示为公共弦所在直线,当两圆相切时,此直线为两圆的公切线,当两圆相离时,此直线表示与两圆连心线垂直的直线.(3)过直线与圆交点的圆系方程:设直线L:Ar+5y+C=0与圆C:/+y2+Dx+Ey+尸=()相交,则过直线L与圆C交点的圆系方程为x2+y2+Dx+Ey+F+(Ax+y+C)=().我们先来看一
6、个教材中的问题.引例2(必修2,2.2.3圆与圆的位置关系的习题2.2(2)思考运用第6题),已知一个圆经过直线/:2x+y+4=0与圆C:/+y2+2x-4y+l=0的两个交点,并且有最小面积,求此圆的方程.常规方法依然是求出直线和圆两个交点.则所求圆是以这两个点为直径的圆.此法的症结依然是在求交点上.如果消元后无法十字相乘,那么运算量就会很大.但是我们采用曲线系方程,先设过直线和圆两交点CC4-1的圆方程为X2+y2+2x-4y+(2x+y+4)=0,再配方得到圆心(T_九方_),利用圆心在直线1.2x+y+4=0上就可以确定人进而求出圆的方程.这是圆系方程的典型方法.【例4】(吉安期末)
7、垂直平分两圆f+y2_2x+6y+2=0,/+9+4-2y-4=0的公共弦的直线方程为()A.3x-4y-3=0B.4x+3y+5=0C.3x4y+9=0D.4x-3y+5=0【例5】(红塔期末)已知圆M的圆心在直线x-y-4=0上并且经过圆Y+)?+6x-4=0与圆X2+6y-28=0的交点,则圆M的标准方程为.【例6】(金安期末)已知圆G:f+y2=i,圆C2:(x-4)2+y2=25,则两圆公切线的方程为.第三锦圆系具有某种共同属性的圆的集合几种常见的圆系方程:(1)同心圆系:(/一XO):+(y-%)2=/,/,九为常数,r为参数.(2)过两已知圆C*,y)=+y2+Od+gy+z=o
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新版圆锥曲线专题17之9 曲线系方程 最新版 圆锥曲线 专题 17 曲线 方程