4.4.2参数方程与普通方程的互化.ppt
《4.4.2参数方程与普通方程的互化.ppt》由会员分享,可在线阅读,更多相关《4.4.2参数方程与普通方程的互化.ppt(13页珍藏版)》请在第壹文秘上搜索。
1、 参数方程和普通方程的互化参数方程和普通方程的互化cos3,()sinxMy由参数方程为参数 直接判断点的轨迹的曲线类型并不容易,但如果将参数方程转化为熟悉的普通方程,则比较简单。2222cos3,sincos(3)1sinxxyyM 由参数方程得:所以点 的轨迹是圆心在(3,0),半径为1的圆。新课讲解(1 1)参数方程通过)参数方程通过代入消元代入消元或或加减消元加减消元消去参数消去参数化为普通方程化为普通方程如:参数方程如:参数方程.sin,cosrbyrax消去参数 可得圆的普通方程(x-a)2+(y-b)2=r2.42,tytx参数方程(t为参数)可得普通方程:y=2x-4通过代入消
2、元法消去参数t,(x0)注意:注意:在参数方程与普通方程的互化中,必须使在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致。的取值范围保持一致。否则,互化就是不等价的否则,互化就是不等价的.参数方程和普通方程的互化:参数方程和普通方程的互化:例例1 1、把下列参数方程化为普通方程,并说明它们各把下列参数方程化为普通方程,并说明它们各表示什么曲线?表示什么曲线?12()12tytx=t()为参数(2)11231)1 1解:因为所以普通方程是(x这是以(,)为端点的一条射线(包括端点)xtyx 35,(1)()21xttyt 为参数(1)237,2xy 解:应用加减消元法,得因此,所求的
3、普通方程是x+3y+7=0sincos().1sin 2y x=(4)为参数2(4)sincos2sin()42,2,2,2.因为:所以 所以普通方程是xxxy x 2sin(2),0,2.cosxy2222(2)sincos1,1,sin1,1,(1)xyyxx 因为所以又所以所求的普通方程是sin3cos32yx(1)2cossinyx(3)(1)(x-2)2+y2=9(3)y=1-2x2(-1x1)例例2、例例3、将下列参数方程化为普通方程:将下列参数方程化为普通方程:(3)x2-y=2(X2或x-2)步骤:步骤:(1)消参;)消参;(2)求定义域。)求定义域。(3)x=t+1/tx=t
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 4.4 参数 方程 普通