正弦定理及其应用.ppt
《正弦定理及其应用.ppt》由会员分享,可在线阅读,更多相关《正弦定理及其应用.ppt(30页珍藏版)》请在第壹文秘上搜索。
1、第一章:解三角形 1.问题的引入问题的引入:.某游客在爬上山顶后,在休息时看到对面的山顶想:这离对面有多远的距离呢?请同学们帮帮这位游客。(工具是测角仪和皮尺)思考:在直角三角形中,“边”与“角”的关系 Rt 中ABC222abcsin,sinacA bcBsinsinabABsin1C sinsinsinabcABC思考:对于一般三角形,上述结论是否成立 在锐角三角形中,CDABD作于点sin,sinCDACDbAb即sin,sinCDBCDaBa即sinsinbAaBsinsinabAB即sinsinacAC同理:sinsinsinabcABC在钝角三角形中,CDABABD作交的延长线于点
2、sin,sinCDACDbAb即sin 180sin,sinCDBBCDaBa即sinsinbAaBsinsinabAB即sinsinacAC同理:sinsinsinabcABC由以上三种情况的讨论可得:正弦定理:sinsinsinabcABC思考:用“向量”的方法如何证明“正弦定理”在一个三角形中,各边的长和它所对角的正弦的比相等,即iAB 向量 是与向量垂直的单位向量iABBCi AC i BCi AC coscoscoscos2222aBbAaBbA或sinsinabAB即sinsinaBbAsinsinacAC同理:sinsinsinabcABC思考:用“三角形面积公式”如何证明“正弦
3、定理”BACDabcaABCahS21而CbBcADhasinsinCabBacSABCsin21sin21同理BacAbcCabSABCsin21sin21sin21haAbcSABCsin212sinsinsinABCabcabcSABCCcBbAasinsinsin 正弦定理 在一个三角形中,各边和它所 对角的正弦的比相等,即变形:CBAcbasin:sin:sin:小结:知道三角形的两个内角和任何一边,利 用正弦定理可以求出三角形中的其它元素。解三角形。中,已知在,9.42,8.81,0.3200cmaBAABC定理的应用举例例1例 2、在三角形ABC中,已知a=20cm,b=28cm
4、,A=40,解三角形(角度精确到1边长精确到1cm)已知两边和其中一边的对角,求其他边和角 在例 2 中,将已知条件改为以下几种情况,结果如何?(1)b20,A60,a203;(2)b20,A60,a103;(3)b20,A60,a15.60ABCb(1)b20,A60,a203sinB ,b sinA a12B30或150,15060 180,B150应舍去.6020203ABC(2)b20,A60,a103sinB 1,b sinA aB90.B60AC20(3)b20,A60,a15.sinB ,b sinA a233233 1,无解.6020AC 已知边a,b和角,求其他边和角为锐角a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正弦 定理 及其 应用