王忠仁信号与系统第5章离散时间fourier变换.ppt
《王忠仁信号与系统第5章离散时间fourier变换.ppt》由会员分享,可在线阅读,更多相关《王忠仁信号与系统第5章离散时间fourier变换.ppt(39页珍藏版)》请在第壹文秘上搜索。
1、第第5章章 离散时间傅里叶变换离散时间傅里叶变换DTFT1.1.离散系统傅里叶变换推导离散系统傅里叶变换推导2.2.离散时间傅里叶变换举例离散时间傅里叶变换举例3.3.离散时间傅里叶变换性质离散时间傅里叶变换性质4.4.卷积性质及其含义和用途卷积性质及其含义和用途推导:类似于连续系统的傅里叶变换,除了 是非周期序列且持续时间有限 N足够大以至于2jnj nee x n 02x nnN如果 2nNNx nx n当而且以 为周期,1.离散系统傅里叶变换推导 002001002,11121jknkkNjknknNNjknjknnNnjjnnjkkx na eNax n eNx n ex n eNNX
2、 ex n eaX eN定义的周期为回顾:离散时间傅里叶级数回顾:离散时间傅里叶级数DTFS 00000112NnkjkjknjkjknkNkNax nX eeX eeNx nx n 当:当 为任何值 000d,的总和积分离散系统傅里叶变换 212=jj njj nnx nX eedX ex n e综合方程分析方程任意2长度区间上的积分注:复变函数与积分变换有更严格的推导。离散时间傅里叶变换对离散时间傅里叶变换对分析方程DTFT综合方程DTFT逆变换x jnX e jj nnX ex n e21x 2jj nnX eed收敛问题收敛问题综合方程:没有,因为是有限区间上的积分分析方程:需要条件,
3、类推于连续时间傅里叶变换,如:有限能量 或 绝对可和 2nx n nx n 2.2.离散时间傅里叶变换举例离散时间傅里叶变换举例1)2)移动的单位抽样上述有相同的幅度(=1),但有一个线性的相位-0n x nn 1jjnnXen e0 x nnn00j njj nnX ennee3)指数衰减函数 无限和公式 ,1nx na u na 01jnjjnjnnaeX ex n eae1111cossinjaeaja211 2 cosjX eaa2110:11 2jX eaaa211:112jX eaaa j1,1 1nx na u naae可当公式用4)离散时间矩形脉冲12N 11111(2)1si
4、n2sin/2NNnjj njjnNnNNX eeeX e5)1sin2Wj nWWnx nedn 1102WjWWxX ed 复指数和的离散时间傅里叶变换(复指数和的离散时间傅里叶变换(DTFTDTFT)回顾连续时间的结果:离散时间会怎样?a)我们期待在 处有一个脉冲(面积为2)b)但是 必须是以2为周期的事实上注意:在综合方程的积分区域超过2周期了,仅需要 在一个2周期内,即:002jtx teXj 0?jnjx neX ejX e0022jmX em 001222jjnj nmX ex nm ede jX e周期序列的离散时间傅里叶变换周期序列的离散时间傅里叶变换DTFS的综合方程由于:
5、DTFT的线性性质 x nx nN 002,jknkkNx na eN0022jknmekm 022jkkNmX eakm 0222kkkkkakaN 见P262-263例例#1#1:离散时间正弦函数:离散时间正弦函数 00011sin22jnjnx nneejj0022jmmX emmjj 例例#2#2:离散时间周期脉冲序列:离散时间周期脉冲序列也是周期脉冲序列,但在频率域!kx nnkN02N 01jknknNax n eN 01011Njknnnx n eNN22jkkX eNN 3.离散时间傅里叶变换的性质离散时间傅里叶变换的性质 分析方程综合方程1)周期性:与连续时间傅里叶变换不同2
6、)线性:jj nnX ex n e 212jj nx nX eed(2)jjX eX e 1212jjax nbxnaXebXe3)时移性:4)频移性:由于周期性,在离散时间里有重要的含义。例子:00j njx nneX e 00()jnjex nX e 0,1nj ny nex nx n 5)时间翻转性:6)共轭对称性:jxnX e*=Xjjx nXee实的jjX eX ee和R是偶函数jjX eX em和I是奇函数和 jx nX e是实的并且是偶的是实的并且是偶的 jx nX e是实的并且是奇的是纯虚的并且是奇的7)时间伸缩性 回忆一下连续时间的性质:时间尺度在连续 时间为无限的好但是在离
7、散时间域:毫无意义;x2n丢失了xn的奇数值。但是我们可以通过插入零值点来“放慢”一个离散时间信:k一个整数 在连续值中插入(k-1)个零值 在本例中插入两 个零值点。(k=3)1x atXjaa2x n1 kxn在时间域通过一 个因数k被伸展在频域通过一个 因数k被压缩 n k0kx n kxn是 的整数倍其他 Xjj nj mkkkknmexn enmkxmk e()j kmjkmx m eX e8)频率域的微分9)帕塞瓦尔定理j两 边 均 乘 以n乘以频域微分 Xjnnx n e je jj nndX ejnx n ed jdnx njX ed 22212jnx nXed 频率域的总能量
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 王忠仁 信号 系统 离散 时间 fourier 变换
