不定积分习题(含答案).docx
《不定积分习题(含答案).docx》由会员分享,可在线阅读,更多相关《不定积分习题(含答案).docx(8页珍藏版)》请在第壹文秘上搜索。
1、不定积分(八)1、求下列不定积分隹l)J-3)J3公rcos2x,6)Jcos2XSin2X(1)yxxdx8 ) J Xdxy2, 3 X(2ex-V-)dx7)JX2、求下列不定积分(第一换元法)n(3-2x)cdxJxnxln(lnx)7)xcos(x2)dx4)cos3xdx12)14)tan3xsecxdx3cos2x+4sin2xdx18)arctanVxyx(l+X)dx3、求下列不定积分(第二换元法)1)L川+/2)Jsin玄工K=o)3)jX4)-Xjdxdx5)JJ(X2+1)36)ji27fdxpdx7)J+jl-x8)1Vl-x4、求下列不定积分(分部积分法)1)Ixs
2、inxdxIarCSinAZZrJ2)J3)x2nxdx4Jsin抑5)x2arctanxdx2cosxdx7)ln2xds,VCOS25公5、求下列不定积分(有理函数积分)丁ax1)Jx+3r2x+3.-dx2)Jx2+3x-0rdx3)JX(X2+1)(B)1、一曲线通过点(/,3),且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的方程。2、已知一个函数(幻的导函数为川一山3-且当工=1时函数值为2,试求此函数。3、证明:若(x=x)+c,则Jf(ax+b)dx=-F(ax+b)+c,(aO)sinx4、设/O)的一个原函数为X,求5、求下列不定积分arctafir-=dX7)xl
3、+InX3(1+x2)dx求以下积分8)(C)cdx2)Jsin(2x)2sinxrarctanexJe2xrx-x.fSinxcosx.dx-dx5)jx+16)SinX+cosx1-COSX-(13) 2cos5x + c10第四章不定积分习题答案(八)1+c24X2+CK(I)Xlaz7a-X-2x+4x+c(2)3(3)35(2xFC(4)Xarctanx+c(5)In2-ln3(6)-(cotx+tanx)+c4(/+7),(7)牙+3Inw+c一1(3-2x)4+cr-Ic(8)7x12(2-3x)3+c2.(1)8(2)2(3)-2cos+c(4)InIlnlnR+c(5)Ink
4、anH+csin(x2)+c(6)arctane+c-lnl-x4+c(7)21-+c(8)4I1arcsin+9-4x2+c(9)2cosX(IO)234.3sinXSinx+c-sec3 -secx+ c (14)3(12)31,9,xln(9+x)+c(15)2212尸arctan+c(16)233Q2arccov(17)21nl0+Czjgv(arctanx)2+cInICSa-Cotd+cO、/(2)-2(VcosVx-sinVx)+cc/JX2422(tanarccos)+c(3) 2xa2z.xxrir.(arcsin-4Z-x)+c(4) 2aa. x arcs in x/ c
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 不定积分 习题 答案
![提示](https://www.1wenmi.com/images/bang_tan.gif)