计量经济学导论ch8.ppt
《计量经济学导论ch8.ppt》由会员分享,可在线阅读,更多相关《计量经济学导论ch8.ppt(19页珍藏版)》请在第壹文秘上搜索。
1、 2013 Cengage Learning.All Rights Reserved.May not be scanned,copied or duplicated,or posted to a publicly accessible website,in whole or in part.Chapter 8 Heteroscedasticity Wooldridge:Introductory Econometrics:A Modern Approach,5e 2013 Cengage Learning.All Rights Reserved.May not be scanned,copied
2、 or duplicated,or posted to a publicly accessible website,in whole or in part.Consequences of heteroscedasticity for OLSOLS still unbiased and consistent under heteroscedastictiy!Also,interpretation of R-squared is not changedHeteroscedasticity invalidates variance formulas for OLS estimatorsThe usu
3、al F-tests and t-tests are not valid under heteroscedasticity Under heteroscedasticity,OLS is no longer the best linear unbiased estimator(BLUE);there may be more efficient linear estimatorsUnconditional error variance is unaffected by heteroscedasticity(which refers to the conditional error varianc
4、e)Multiple Regression Analysis:Heteroscedasticity 2013 Cengage Learning.All Rights Reserved.May not be scanned,copied or duplicated,or posted to a publicly accessible website,in whole or in part.Heteroscedasticity-robust inference after OLSFormulas for OLS standard errors and related statistics have
5、 been developed that are robust to heteroscedasticity of unknown formAll formulas are only valid in large samplesFormula for heteroscedasticity-robust OLS standard errorUsing these formulas,the usual t-test is valid asymptoticallyThe usual F-statistic does not work under heteroscedasticity,but heter
6、oscedasticity robust versions are available in most softwareAlso called White/Eicker standard errors.They involve the squared residuals from the regression and from a regression of xj on all other explanatory variables.Multiple Regression Analysis:Heteroscedasticity 2013 Cengage Learning.All Rights
7、Reserved.May not be scanned,copied or duplicated,or posted to a publicly accessible website,in whole or in part.Example:Hourly wage equationHeteroscedasticity robust standard errors may be larger or smaller than their nonrobust counterparts.The differences are often small in practice.F-statistics ar
8、e also often not too different.If there is strong heteroscedasticity,differences may be larger.To be on the safe side,it is advisable to always compute robust standard errors.Multiple Regression Analysis:Heteroscedasticity 2013 Cengage Learning.All Rights Reserved.May not be scanned,copied or duplic
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计量 经济学 导论 ch8