风机、塔架和基础整体化设计方法评估技术规范书.docx
《风机、塔架和基础整体化设计方法评估技术规范书.docx》由会员分享,可在线阅读,更多相关《风机、塔架和基础整体化设计方法评估技术规范书.docx(8页珍藏版)》请在第壹文秘上搜索。
1、风机、塔架和基础整体化设计方法评估技术规范书种海上风电单桩基础的塔架构型设计方法受益于风电的技术进步和规模扩大,风电机组价格、风电开发投资成本及运行维护成本呈现不断下降趋势。如图1所示,海上风电机组主要包括风机机组(1)、塔架锥段(2)、塔架直段(3)、泥面以上单桩段(4)、泥面以下单桩段(5)。从风电机组价格来看,海上风机支撑结构包括塔架和基础两部分:风机塔架成本约占海上风电项目投资成本8%左右,海上风机基础主要包括单桩、导管架、高桩承台等不同基础形式,一般占海上风电项目投资成本的14%左右,即整体支撑结构成本在总建设成本中占比约22%左右。因此,降低海上风电支撑结构成本能够有效降低海上风电
2、的平准化度电成本。当前国内海上风电项目在招投标时通常采用分步迭代设计方法,一般由风机厂家给出塔架设计并担保塔架工程量,评标过程中会对塔架重量进行排名和评分;标后详细设计阶段时风机厂家和设计院依次分别对塔架和基础进行优化设计。在此流程下,风机厂家会尽可能给出塔架最轻的局部最优设计方案,而塔架最轻的设计往往不是整体支撑结构最轻的全局最优设计方案。在设计海上风机支撑结构时都包含了三部分:载荷计算、塔架设计和基础设计。1)载荷计算海上风电支撑结构受到风、浪、流等多种环境载荷的联合作用。行业内大部分风机厂家采用GH-BIaded进行一体化建模和载荷计算。一体化建模包含环境条件输入和整体支撑结构模型搭建两
3、方面。其中,环境条件包括风资源参数、海洋水文参数、工程地质参数及其他特殊工况(海冰、地震、台风等);整体支撑结构模型包括机头、塔架、泥面以上结构和基础(也可统称为基础结构)。载荷计算中考虑了风浪异向作用,根据IEC规范需要考虑正常发电、紧急停机、开机、正常停机、空转、维修等多种工况,根据风浪联合分布可分成多达20000多个工况。2)塔架设计塔架设计中,需要进行塔架主体及局部结构的极限强度、屈曲强度和疲劳强度校核。极限强度校核包括塔架筒体、塔架法兰、门洞及海缆孔、锚栓笼等局部结构的校核;屈曲强度校核包括塔架筒体和门洞海缆孔等结构的校核;疲劳强度校核包括塔架筒体焊缝、法兰连接螺栓、门框及海缆孔、顶
4、法兰、锚栓笼等结构的校核。3)基础设计在基础结构主体设计中,主要包含极限海况下的强度承载力分析、正常服役工况分析、船撞分析、地震工况分析等。荷载组合中考虑可能出现的最不利水位下的波浪、海流与风机运行载荷的极端组合作用。疲劳强度分析利用S-N曲线与Miner线性累计损伤理论进行疲劳计算。分别计算各个管节点在疲劳荷载作用下累积损伤程度,利用累积损伤程度评估结构的抗疲劳设计安全性。当前风电行业大都采用的是分步迭代设计方法。图2给出了海上单桩基础整体支撑结构的示意图。如图2所示,整体支撑结构以设计交界面为分界,交界面以上为塔架,交界面以下为基础结构。图2给出了分步迭代设计方法的流程。首先由设计院提供项
5、目的环境输入;风机厂家根据环境输入给出塔架和基础的初始构型并进行整体建模和载荷计算,在得到最优的塔架后把设计交界面处的载荷、塔架构型和频率要求提给设计院;接着设计院在给定载荷和塔架构型的前提下对基础结构进行校核和优化设计,并满足风机厂家给出的频率要求;最后风机厂家在得到优化的基础结构后判断是否收敛,如果满足则迭代结束,如不满足则重新建模并进行载荷计算。在这里收敛准则包含两类:一类是根据规范对塔架和基础校核的设计准则;另一类是本轮和上轮得到的优化设计的质量和频率差别是否在1%以内。需要说明的是,在当前采用海上风机支撑结构设计方法时,在确定了初步构型以后(塔架和单桩基础的直径)一般需要2-4轮迭代
6、才能收敛,每一轮都需要进行载荷计算、塔架和基础的设计优化。如果要进一步优化塔架和单桩的直径以找到整体支撑结构质量最轻的设计,将十分耗费计算时间以致于影响项目进度。因此,在实际工程项目中为了尽快提供塔架和单桩基础的施工图,往往没有足够的时间用于优化,并且在此过程中,塔架和基础的设计和优化是依次先后进行的,是两个独立的设计域,目标都是找到各自设计域中的最优设计。因此在实际的项目中,最终得到的设计往往是塔架最轻的局部最优设计,而不是整体支撑结构最轻的全局最优设计。综上所述,我们需要找到一种能够快速给出塔架构型的设计,以便在对海上风电单桩基础整体支撑结构进行优化设计时可以快速获得最轻的优化结果。二海上
7、风机塔架和单桩一体化试验设计方法1一体化载荷计算及结构设计海上支撑结构受到的载荷主要来自于风、浪、流。在支撑结构迭代计算中,一体化建模及载荷计算、塔架和基础结构设计是主要内容。1.1 一体化建模及载荷计算国内厂家目前都采用GH-BIaded软件对风机载荷进行一体化建模和载荷计算。一体化建模包含环境条件输入和支撑结构模型搭建两方面。其中,环境条件包括风资源参数、海洋水文参数、工程地质参数及其他特殊工况(海冰、地震、台风等);支撑结构模型包括机头、塔架、基础(包括泥面以下部分)。依据机组运行状态,将不同环境参数,控制参数以及机组运行情况进行组合。可分为正常发电,发电+故障工况,启机工况,停机工况,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 风机 基础 整体 设计 方法 评估 技术规范
