第4章:DNA损伤反应.ppt
《第4章:DNA损伤反应.ppt》由会员分享,可在线阅读,更多相关《第4章:DNA损伤反应.ppt(52页珍藏版)》请在第壹文秘上搜索。
1、第十一章 DNA损伤反应 自发突变诱发突变 化学物质和射线。损伤的DNA在其复制或分离前得到修复,因此基因序列上的改变极少会传递到子细胞中。细胞内存在感应蛋白,能够对基因组进行扫描,探测DNA的损伤,招募特定的酶来进行修复。不影响细胞功能 如果DNA的大面积损伤并且不容易修复,损伤感应器能触发更为广泛的反应,称为DNA损伤反应损伤反应。细胞内信号通路被激活,传递损伤信号到各种效应蛋白。DNA修复酶量增加,细胞周期调控系统抑制蛋白。阻断细胞周期进程。DNA损伤反应的这条支路有时被称为DNA损伤检验点。如果损伤得以修复,细胞周期阻断会被去除,细胞增殖继续进行。ATR和和ATM是是DNA损伤反应核心
2、的蛋白激酶损伤反应核心的蛋白激酶当损伤不能被修复时,使细胞周期持久停滞或细胞死亡。ATR或ATM 激活,p53触发很多靶基因的表达增加,使细胞周期停滞以及凋亡 DNA损伤反应成分的缺失,可导致在人的疾病的发生。自发的DNA损伤也可不可避免地会导致损伤DNA的积累,最终产生能导致不合适细胞行为的突变。DNA损伤反应成分的突变,如ATR,ATM,Chk1,Chk2和p53通常导致对DNA损伤敏感性增加,并增加发展为癌症的可能性。第一节 DNA损伤的探测和修复 单链断裂 水解分裂可产生嘌呤核苷酸上碱基的丢失。代谢副产物和环境化学物烷化不同部位的DNA碱基。双链断裂 离子放射如X-射线 化学物如博来霉
3、素等双链断裂特别有害,因为DNA损伤修复装置能偶然性地将来自不同染色体暴露的DNA末端融合到一起,导致染色体重排。(一)、单链断裂:未损伤的链。去除DNA损伤部分,并以未损伤的DNA链作为模板进行正确地重新合成,而很容易地得到修复。1.碱基切除修复碱基切除修复2.核苷酸切除修复核苷酸切除修复能在碱基结构上找到相对微小的变化如脱氨作用和碱基的甲基化并进行修复。该系统成分能将每一个碱基翻转出螺旋以检查是否异常,从而对DNA进行扫描。当发现有改变的碱基时,可将其从DNA骨架上去除,然后将无碱基链的糖-磷酸骨架去除。DNA聚合酶以未损伤的链作为模板,添加新的核苷酸。DNA链上的缺刻由DNA连接酶封闭。
4、负责探测与修复那些改变双螺旋构型的大片DNA损伤突变。包括嘧啶二聚体或DNA被苯并芘等大化学物的烷化。核苷酸切除修复装置对DNA进行扫描以搜索大的螺旋弯曲,然后利用核酸酶和DNA解旋酶去除伸出的短损伤链。再利用未损伤的链作为模板合成新链,从而修复原始序列。当双链断裂发生在DNA上时,暴露的末端通常被核酸酶切除,产生单链突出。不精确修复:不精确修复:有些情况下,这些损伤末端可被处理成平端,由非同源末端连接进行重新连接,产生新的DNA分子,它比原始序列缺少好几个核苷酸。二)、双链断裂:精确修复:同源重组。来自断裂DNA的单链末端伸入到姊妹染色单体或同源染色体的同源序列。入侵的链沿着同源模板延伸,以
5、同源染色体作为断裂链模板进行修复。这样产生的修复的DNA分子,其上的损伤区域被来自姊妹染色单体或同源染色体的序列所取代。二)、双链断裂:第二节 DNA损伤反应:ATR和ATM很多DNA损伤形式可以得到快速修复,不需要触发DNA损伤反应,引起细胞周期停滞。然而有些损伤,范围特别大或者很难修复如当姊妹染色单体不能进行重组型的双链断裂修复时,或当双链断裂伴随着大范围的核苷酸改变时。这些情况下,需要靠招募蛋白激酶ATR和ATM中的一个或两个到损伤位点来启动特定的损伤反应。这些激酶通过磷酸化各种也聚集在损伤位点的蛋白来激活损伤反应。ATR正常定位于整个核内;放射导致ATR集中于损伤位点处。细胞用小干扰R
6、NA处理,抑制RPA在细胞内的合成。RPA蛋白的下降阻碍了ATR被招募到DNA损伤位点,从而阻断损伤反应。细胞在S期比在G1期哪个对DNA损伤更为敏感?第三节 DNA损伤反应:接头蛋白和Chk1及Chk2 ATR与ATM结合到DNA损伤位点伴随着很多其他蛋白招募到DNA周围。这些成分一起形成大的多蛋白复合物,能帮助招募与协调修复DNA的酶类。这些复合物也能结合并激活另外两类蛋白激酶Chk1和Chk2,它们将损伤信号传递给细胞周期调控系统成分,导致细胞周期进程延迟。9-1-1和9-1-1复合物:三个亚基组成,形成指环围绕损伤的DNA,它为ATR介导的DNA损伤反应所必需,似乎也能通过修复蛋白促进
7、损伤处理进程。Rad17-RFC:滑钳装载体的修饰形式,Rad17-RFC为9-1-1复合物装载到损伤DNA上所必需 芽殖酵母中ATR依赖的切除双链断裂反应过程起始于ATR-ATRIP结合RPA招募9-1-1复合物装载在或靠近邻近5-缺口的DNA结构上。ATR磷酸化9-1-1复合物成分。接头蛋白Rad9形成寡聚体与损伤位点结合,结合可能通过与ATR、磷酸化的9-1-1复合物或修饰的组蛋白的相互作用。ATR磷酸化Rad9,因而在Rad9上形成激酶Chk2的结合位点。随后Chk2被ATR磷酸化,也能自身磷酸化,导致自身激活并脱离复合物。接头蛋白将DNA损伤与Chk1和Chk2的激活相联系 第四节D
8、NA损伤反应:p53的激活 一、p53与细胞增殖的长期抑制 p53是基因调节蛋白,能够直接结合到靶基因的启动子区,改变它们转录起始的速率。大部分情况下,p53促进靶基因的表达,p53激活的总体结果是增加了抑制细胞周期进程,或促进凋亡的蛋白产量。同时,p53抑制了一些靶基因的转录,尤其是那些编码抑制凋亡的基因。因此p53作用的结果是细胞周期停滞或细胞死亡,这要视细胞类型和其他因素而定。p53在DNA损伤和其他的细胞应激反应中具有核心重要的地位,其激活能引起细胞的死亡。因此p53须经历非同寻常的一系列大的调节修饰来确保只有在需要时才存在并具有活性。当DNA损伤时,大部分的这些修饰增加了其浓度或其内
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- DNA 损伤 反应
![提示](https://www.1wenmi.com/images/bang_tan.gif)