基于遗传算法的TSP问题解决.docx
《基于遗传算法的TSP问题解决.docx》由会员分享,可在线阅读,更多相关《基于遗传算法的TSP问题解决.docx(8页珍藏版)》请在第壹文秘上搜索。
1、实验题目:的遗传算法解决TSP问题姓名:谢稳文班级:智能IOol学号:20230840126一:问题描述旅行商问题,即TSP问题(TravellingSalesmanProblem)又译为旅行商问题,货郎担问题,是数学领域中著名问题之一。假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。TSP问题是一个组合优化问题。该问题可以被证明具有NPC计算复杂性。因此,任何能使该问题的求解得以简化的方法,都将受到高度的评价和关注。二:遗传算法的根本原理遗传算法是由美国JHoll
2、and教授于1975年在他的专著自然界和人工系统的适应性中首先提出的,它是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。遗传算法模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保存一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。遗传算法,在本质上是一种不依赖具体问题的直接搜索方法,是一种求解问题的高效并行全局搜索方法。遗传算法在模式识别、神经网络、图像处理、机器学习、工业优化控制、自适应控制、负载平衡、电磁系统设计、生物科学、社会科学等方面都得到了应
3、用。在人工智能研究中,现在人们认为“遗传算法、自适应系统、细胞自动控制、混沌理论与人工智一样,都是对今后十年的计算技术有重大影响的关键技术。根本步骤为:标准的遗传算法包括群体的初始化,选择,交叉,变异操作。所示,其主要步骤可描述如下:(1)随机产生一组初始个体构成的初始种群,并评价每一个个体的适配值。(2)判断算法的收敛准那么是否满足。假设满足输出搜索结果;否那么执行以下步骤。(3)根据适配值大小以一定方式执行选择操作。(4)按交叉概率PC执行交叉操作。(5)按变异概率PnI执行变异操作。(6)返回步骤算法流程图为:三:TSP问题的遗传算法设计初始种群:对于个城市的问题,每个个体即每个解的长度
4、为A,用S行,列的POP矩阵表示初始群体,S表示初始群体的个数,为加1,矩阵的每一行的前A个元素表示城市编码,最后一个元素表示这一路径的长度。这一算法通过start.血呈序实现。适应度:在TSP的求解中,可以直接用距离总和作为适应度函数。个体的路径长度越小,所得个体优越,以POP矩阵的每一行最后一个元素作为个体适应值。选择:选择就是从群体中选择优胜个体、淘汰劣质个体的操作,它是建立在群体中个体适应度评估根底上。这里采用方法是最优保存方法。算法就是首先将群体中适应度最大的k个个体直接替换适应度最小的k个体。交叉:受贪婪算法的启发,本文设计一种有目的使适应值上升的交叉算子。两al(mil,ml2,
5、ml3,.,mln),a2(m21,m22,m23,.,m2n),算法产生后代al和a2的过程如下:(1)随机产生一个城市d作为交叉起点,把d作为al和a2的起始点(2)分别从al和a2中找出d的右城市drl和dr2,并计算(d,drl)和(d,dr2)的距离JI和J2。(3)如果jkj2,那么把drl作为al的第二个点,从al和a2中删除d,并且把当前点改为drL转步骤(5)。(4)如果jlj2,那么把dr2作为al的第二个点,从al和a2中删除d,并且把当前点改为dr2。(5)假设此时PI和p2的个数为1,结束,否那么回到第二步继续执行。同理,把第二步中的右城市改成左城市dlel和dle2
6、,通过计算(d,dlel)和(d,dle2)的距离并比拟大小来确定子代a2。变异:变异操作是以变异概率Pm对群体中个体串某些基因位上的基因值作变动,假设变异后子代的适应度值更加优异,那么保存子代染色体,否那么,仍保存父代染色体。这里采用的方法是倒置变异法。假设当前个体X为(1374805962)o如果Pmrand,那么随机选择来自同一个体的两个点mutatepoint(1)和Iiiutatepoint(2),比方说3和7,倒置Pl和P之间的局部,产生下面的子体X为(1375084962)o四:实验代码1主函数局部clc;clearall;closeall;globalxycityfile=fo
7、pen(city30.txtt,*rt);宅取30个城市的样本cities=fscanf(cityfile,f%f,2,inf);fclose(cityfile);t=30+l;舍城市的数目是3。个s=1500;金样本的数目是1400个G=300;*运算的代数c=25;%选择算子中每次替代的样本的数量x=cities(1,:);y=cities(2,:);pc=o.10;金交叉的概率pm=0.8;留变异的概率pop-zeros(srt);宅得初始的p。P矩阵,矩阵的最后列袋小所在打的样本的路径距离fori=l:spop(i,lzt-l)=randperm(t-l);宅随机产生工一(t-l)的t
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 遗传 算法 TSP 问题解决