大学概率论与数理统计必过复习资料及试题解析(绝对好用).docx
《大学概率论与数理统计必过复习资料及试题解析(绝对好用).docx》由会员分享,可在线阅读,更多相关《大学概率论与数理统计必过复习资料及试题解析(绝对好用).docx(95页珍藏版)》请在第壹文秘上搜索。
1、概率论与数理统计复习提要第一章随机事件与概率1 .事件的关系AUBAuBABA-BAAB=2 .运算规那么(1)AjB=BO,那么P(AlB)P(B)(2) 乘法公式:P(AB)=P(B)P(AIB)假设四,当,5为完备事件组,P(Bj)0,那么有(3) 全概率公式:P(八)=WP(Bj)P(AlBjZ=I(4) Bayes公式:P(BkA)=,=与)汽P(BM(Al坊)=17 .事件的独立性:A,8独立OP(Aa=P(八)P(3)(注意独立性的应用)第二章随机变量与概率分布1 .离散随机变量:取有限或可列个值,P(X=Xj)=P,满足(1)PjO,(2)EPi=I9对任意。uH,P(XQ)=
2、EPi匕XiGD2 .连续随机变量:具有概率密度函数/(R),满足(1)/U)(),f(x)dx=iJ-QO(2) P(aXb)=jf(x)dx;(3)对任意R,P(X=a)=O3.几个常用随机变量名称与记号分布列或密度数学期望方差两点分布8(1,P)P(X=l)=p,P(X=O)=夕=I-PPPq二项式分布BgP)P(X=Q=C:pkqn-k,k=0,1,2,明npnpqPoisson分布P()无p(X=&)=e4/=0,l,2一,k几何分布G(P)P(X=k)=qZp,k=2,Pq7均匀分布U(,8)f(X)=-,axb,b-aa+b2S-a)?12指数分布E(八)f(x)=x,x()j_
3、I1不正态分布NT,/)1/(X)=-J=e2y224 .分布函数F(x)=P(Xx)9具有以下性质(UFs)=O,F(+)=l;(2)单调非降;(3)右连续;(4) P(a4)=l-/;(5)对离散随机变量,F(X)=Xpi.;izxix(6)对连续随机变量,F(X)=力为连续函数,且在F(X)连续点上,F(x)=(x)J-Oo5 .正态分布的概率计算以()记标准正态分布N(0,l)的分布函数,那么有(1) (0)=0.5t(2)(-x)=l-(x)j假设XN3),那么F(X)=(二上):(4)以Q记标准正态分布N(OJ)的上侧分位数,那么P(X)=l-(%)6 .随机变量的函数y=g(x)
4、()离散时,求y的值,将相同的概率相加;(2)X连续,g(x)在X的取值范围内严格单调,且有一阶连续导数,那么(y)=U-,W)U-1)b假设不单调,先求分布函数,再求导。第三章随机向量1 .二维离散随机向量,联合分布列P(X=Xj,y=)=%,边缘分布列P(X=Xj)=p,P(Y=X)=P.,有Pij0;(2)ZPLhPj=ZP炉Pj=Ypijyi2 .二维连续随机向量,联合密度/(x,y),边缘密度f(x),y(y),有f(xfy)Oi(2)r(%y)=h(X,Y)eG)=fff(xty)dxdy;()=J:/(x,y)dy,f(y)=f(,y)dx3 .二维均匀分布“乂月蔡而。)6。,其
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学 概率论 数理统计 复习资料 试题 解析 绝对
