最新条件概率的性质及其应用——毕业论文.docx
《最新条件概率的性质及其应用——毕业论文.docx》由会员分享,可在线阅读,更多相关《最新条件概率的性质及其应用——毕业论文.docx(18页珍藏版)》请在第壹文秘上搜索。
1、条件概率及其应用摘要概率论与数理统计就是研究随机现象的统计规律的一门学科,由于在生产生活等等各个方面随机现象具有普遍性,使得概率论与数理统计具有极其广阔的应用。概率论是对随机事物的现象进行统计规律演绎的研究,而数理统计又是对随机事物现象进行统计规律归纳的研究。并且条件概率这个概念有是概率论与数理统计的一个重要的内容和一个基本的工具。本文从条件概率的定义、性质、定理、应用这四个方面来解释、探讨、分析条件概率。近年来,由于一方面它为科学技术、工农业的生产等的现代化作出了极其重要的贡献;另一方面,广泛的应用也促进概率论与数理统计有了非常大的发展。本文从条件概率的定义、性质、定理这三个方面来解释、探讨
2、、分析条件概率。并从应用的角度对条件概率进行系统全面的阐述,把目前应用和后继发展进行兼顾考虑,随着科学技术、工农业的生产等的现代化的发展,该课题还存在大量的后续研究工作。关键词:条件概率;全概率公式;贝叶斯公式;应用引言或绪论等(内容略)第一章.条件概率的定义和性质条件概率是概率论中的一个基本工具,在中产生活中有着重要作用。在现实的世界里很少存在单一的不受别的事件影响的情况,由于事件的概率经常会由于其他时间的影响而发生改变,所以这里我们引入条件概率这一概念。这样我们就能了解在事件B已经发生的情况下时间A发生的概率,这样也就解决了无条件概率不能解决的问题例1、设在N只鸡的总体中,有NA条是白鸡而
3、且有Ns条是母鸡的。若事件A及事件B表示随机选取一条是白鸡及是母鸡,则P(八)=P(B)=维NN现在,以所有母鸡组成的子总体代替总体的位置,我们来计算从母鸡中随机选出的一只鸡是白鸡的概率。这概率就是NAB/Nb,其中NM是白色母鸡的数目。在研究某个特定的子集的时候,我们需要用一个新的符号来表达。一般所采用的符号是P(AB),可读为“在事件B(所选出的鸡是母鸡的)发生的假定条件下,时间A(白鸡)发生的概率”。采用数学符号P(A B) =J =NBP(AB)P(B)很显然,每一个子集本身总可以被考虑为一个总体。为了表达上的方便,我们说一个子集时,意思是说这个子集背后还有一个较大的总体。从上面的例子
4、可以看出P(八)一般是与P(AB)不同的。再来看一个例子。例2、从标号为1、2、3、4的四个球中,等可能地任取一个球,那么事件A:“得标号为4”的概率P(八)=O.25;如果已知事件B:“得标号为偶数”已经出现,那么这时只剩下两种可能,或得2号或得4号,所以P(AlB)=0.5在一般情况下,应该怎么样定义P(AlB)呢?由于频率与概率有很多类似的性质,先从频率的讨论开始。设A、B为任一个随机试验E中的两个事件,每次试验结果。不外是下列四种情况中的一种。(I)A出现,B不出现(2)B出现,A不出现(3)A,B都出现(4)A,B都不出现。现在把E重复做n次,分别以nl、n2、n3、n4记下四种情况
5、出现的次数,显然Zni=n0而且i=lB的频率为/(B)=今以,AB的频率为Fn(AB)=T,在B已经出现的条件下,A的频率为尸(AB)二一,根据这些式子,得112+113Fn(AB)=pn(AB)pn(B)o因此,如Fn(B)0就有(A回=馈这个式子告诉我们,如何去定义P(AB)o我们就得到如下定义定义设(Q,F,P)为概率空间,AF,BF,设P(B)X)。在事件B已出现的条件下,事件A出现的概率P(AB)定义为P(AiB) =P(AB)P(B)对于古典类型的随机试验,设B含有m个不同的基本事件,m0,AB含有k个,以n表示Q中总共不同的基本事件的个数,则P(AlB)=半=Am/nm类似的可
6、以知道,对于几何随机试验,例如F(B)0,我们有这样的式子P(AIB)二曳竺四=幺幽F(B)F()L(B)容易验证,条件概率具有概率定义中的三个基本性质:如果P(B)0,那么P(AlB)作为A的集函数是F上的概率;即(1)对每个AeF,有1P(AB)0;(2)P(B)=1;(3)如AmeF,m=L2,.,两两互不相容,则有P(Cl4I8)=p(4|8)m=lm=l现在对上面的三个性质进行证明:证(1)因P(B)P(AB),P(B)0,故由(3)知1P(AB)0(2)P(8) 二P(Q8)_P(B)-P(B) 厢FXAB)p(3)P(UAJB)=UN-72二尸(41B)m=lID)m=m=l第二
7、章.条件概率的三定理现在对条件概率来证明三条重要的定理,这就是:概率的乘法定理,全概率公式与贝叶斯(BayeS)公式。这些定理在概率的计算中起着重要的作为。2.1概率的乘法定理定理1设A,A2,4为n个事件,n2,满足P(AAA-JO;则PGM2A)=P(八)P(4A)P(AlA4)P(AlA44)上式称为乘法公式。它的直观意义是:A,A2,.,4同时出现的概率,等于出现A,在A出现的条件下出现A2,在A,4出现的条件下出现A3,各自的概率的乘积。证由于P(Ai)P(AiA2).P(12-1)0,故P(A44)=P(八)P(AIA)P(AIAA)P(AJA4AJ右方出现的条件概率都有意义;由条
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 条件 概率 性质 及其 应用 毕业论文