《正比例》教案全套.docx
《《正比例》教案全套.docx》由会员分享,可在线阅读,更多相关《《正比例》教案全套.docx(9页珍藏版)》请在第壹文秘上搜索。
1、正比例教案全套教学内容教科书P45例1,完成教科书P49练习九中第L2、4题。教学目标1 .从具体实例中认识成正比例的量,初步理解正比例的意义及字母表达式,学会根据正比例的意义来判断两种相关联的量是不是成正比例关系。2 .让学生在认识成正比例的量的过程中,学会用函数的眼光去理解数量关系中量与量的变化规律,发现两个变量背后的不变量,培养学生的分析能力和抽象概括能力。3 .渗透函数思想,初步建立实物之间互相联系的观念。教学重点理解正比例的意义,并会判断两种量是否成正比例关系。教学难点在探究中抽象出正比例的意义,渗透函数思想。教学准备课件。教学过程一、提供素材,感受相关联的量1 .复习导入。师:已知
2、路程和时间,怎样求速度?【学情预设】学生会说出:速度=路程一时间。师:我们把路程和时间这样有关系的两种量叫做相关联的量。你还能举出相关联的量的例子吗?【学情预设】学生可能会说出:总价:数量=单价,总价和数量是两种相关联的量;工作总量工作时间=工作效率,工作总量和工作时间是两种相关联的量;一本书看了的页数+剩下的页数二总页数,看了的页数与剩下的页数是两种相关联的量等等。只要学生说出的两个量是相关联的,都要予以肯定。2 .引入课题。师:这节课我们一起来研究有关两种相关联的量的知识。(板书课题:正比例)【设计意图】充分利用学生的认知经验和生活经验,在熟悉的数量关系的情境中导入新课,理解两种相关联的量
3、的意义,为后续的学习作铺垫。二、合作学习,探究成正比例的量1 .初步理解正比例的意义。Q)课件出示教科书P45例Io(2)学生独立思考后,小组交流。(3)汇报交流。【学情预设】预设1:表中有总价和数量两种量。预设2:彩带销售的数量增加,总价就相应增加;彩带销售的数量减少,总价就相应减少。预设3:相应的总价和数量的比分别为,比值都是3.5o教师根据学生的回答,板书总价和数量的比。师:根据大家的汇报,我们发现总价和数量是两种相关联的量,总价是随着数量的变化而变化的,而且总价与相应数量的比值都是3.5,因此我们就说它们的比值总是一定的。(4)揭示课题。【教学提示】正比例的意义比较抽象,让学生结合具体
4、数量表达正比例的意义,避免学生不理解意义而生搬硬套。师:你知道总价与数量的比值3.5表示什么吗?【学情预设】学生会说出:总价数量=单价,3.5表示彩带的单价。师:对,二单价,现在单价一定(板书),那么总价与数量这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是今天我们学习的内容。(出示课件)师:请大家读一读这段话,然后和同桌互相说一说正比例的意义。2 .对比辨析,深入理解正比例的意义。Q)课件出示习题。(2)师:两个表中的量有什么相同的地方?【学情预设】预设1:都有时间和路程这两种量。预设2:汽车行驶的路程随时间的变化而变化,自行车行驶的路程也随时间的变化而变化。预设3:汽车的路程和
5、时间是两种相关联的量,自行车的路程和时间也是两种相关联的量。(3)师:那我们是否可以说两个表中的路程与时间这两种量都成正比例关系呢?你能确定汽车和自行车6小时行驶的路程是多少吗?请大家思考后,先在小组内说一说。【教学提示】这个环节是在学生初步理解正比例的意义的基础上设计的,要注意引导学生在对比中主动观察、分析和讨论,使学生对正比例关系的理解从浅显到深刻。【学情预设】预设1:我用路程时间=速度,求出汽车的速度是相同的,都是80千米/时,而自行车的速度是不同的,有时是20千米/时,有时是12千米/时。所以表1中路程与时间成正比例关系,表2中路程与时间不成正比例关系。预设2:汽车的速度不变,可以判断
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正比例 教案 全套