数据归一化.docx
《数据归一化.docx》由会员分享,可在线阅读,更多相关《数据归一化.docx(5页珍藏版)》请在第壹文秘上搜索。
1、一、数据归一化数据归一化方法是神经网络预测前对数据常用的-种处理方法。数据归一化处理把所有数据都转化为0,1或-1之间的数,其目的是取消各维数据间数量级差别,避免因为输入输出数据数量级差别较大而造成网络预测误差较大川(如本文中输入数据为0.16、0.4、1.2、2,输出数据是191.7,数量级相差较大)。进行数据归一化处理,修改其编程(以自然养护7天抗压强度试验结果为例)如下:P=0.160.160.160.160.180.180.180.180.20.20.20.20.220.220.220.22;0.20.30.40.50.20.30.40.50.20.30.40.50.20.30.40.
2、5;0,811.21.410.81.41.21.21.40.811.41.210.8;00.951.902.952.761.810.9300.8402.841.821.672.5100.87%训练组输入数据P1,psl=mapminmax(P)%数据归一化,使矩阵Pl的每一行的最低和最高值映射到默认区间-1,1,处理方式存为PSIT=73.5109.8120.0114.880.586.275.274.463.555.491.781.756.253.454.569.7%训练组输出数据Tl,ps2=mapminmax(T)%数据归一化,使矩阵Tl的每一行的最低和最高值映射到默认区间-1,1,处理方
3、式存为ps2net=newff(minmax(Pl),10,1,tansig,purelin)net.trainparam.epochs=1(X)Onet.trainparam,goal=0.000000000000001%神经网络建立与参数设置net=train(net,P1,T1)%对神经网络进行训练P_test=0.180.20.220.18;0.30.40.50.4;1.211.41.4;0.881.822.640%测试组输入数据P_testl=mapminmax(apply,P_test,ps1)%应用psi的处理方式处理P_testT_test=78.979.672.471.8%测
4、试组输出数据T_testl=mapminmax(apply,T_test,ps2)%应用ps2的处理方式处理TjeSty_test1=sim(net,P_test1)%测试组结果预测y-test=mapminmax(,reverse,y-test1,ps2)%对测试组预测结果进行反归一化error_test=y_test-T_testres_test=norm(error_test)%误差(标准差)计算将上述编程保存为M文件zr7.m(命令集,自然养护28天和蒸压养护7天分别为zr28.m和zy7.m),利用while条件函数:whileres_test10zr7End%当测试组预测结果标准差
5、大于IO时执行zr7利用上述命令实现神经网络的修正,直至标准差小于10(强度小于IOMPa)停止,此时将得到的神经网络模型保存为zr7.mato采用相同的处理方法处理自然养护28天、蒸压养护7天的抗压强度试验结果数据,分别将其神经网络模型保存为zr28.mat和zy7.mato二、神经网络此处列出所得神经网络模型的权值和阙值,以便于其他的学者进行验证。(邮件附上M文件与神经网络模型mat文件)。表1zr7输入层和隐含层的权值和阙值隐含层权值阙值水胶比(W/B)硅灰(SF心砂胶比(S/B)钢纤维(V%)11.18340.3712-2.65450.8615-2.117622.2052-1.3670
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据 归一化