学案空间向量的应用142用空间向量研究距离夹角问题.docx
《学案空间向量的应用142用空间向量研究距离夹角问题.docx》由会员分享,可在线阅读,更多相关《学案空间向量的应用142用空间向量研究距离夹角问题.docx(29页珍藏版)》请在第壹文秘上搜索。
1、空间向量的应用1. 4.2用空间向量研究距离、夹角问题【第一课时】【学习目标】1 .用向量语言表示点到直线、点到平面、互相平行的直线、互相平行的平面的距离问题。2 .能用向量方法解决点到直线、点到平面、互相平行的直线、互相平行的平面的距离问题。【学习重难点】重点:理解运用向量方法求空间距离的原理。难点:掌握运用空间向量求空间距离的方法。【知识梳理】一、自主导学(一)、点到直线的距离、两条平行直线之间的距离1 点到直线的距离已知直线/的单位方向向量为山A是直线/上的定点,P是直线/外一点。设羽=a,则向量而在直线I上的投影向量而=(a)。点P到直线I的距离为PQ=Ja2-(a-)2.2 .两条平
2、行直线之间的距离求两条平行直线/,加之间的距离,可在其中一条直线/上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离。点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题。(二)点到平面的距离、两个平行平面之间的距离点到平面的距离已知平面。的法向量为n,A是平面内的定点,P是平面外一点。过点尸作平面的垂线/,交平面。于点Q,则点P到平面的距离为PQ二誓。点睛:1.实质上,n是直线/的方向向量,点尸到平面。的距离就是存在直线/上的投影向量评的长度。2 .如果一条直线/与一个平面。平行,可在
3、直线/上任取一点P,将线面距离转化为点P到平面的距离求解。3 .两个平行平面之间的距离如果两个平面仪,4互相平行,在其中一个平面。内任取一点P,可将两个平行平面的距离转化为点P到平面用的距离求解。二、小试牛刀1.已知正方体A8CQ-A4G的棱长为2,Ei尸分别是GC,OIAl的中点,则点A到直线所的距离为。2.在正四棱柱4BCQ-ABGQ中,底面边长为2,距离为。【学习过程】一、情境导学如图,在蔬菜大棚基地有一条笔直的公路,某 B 人要在点A处,修建一个蔬菜存储库。如何在公路I 上选择一个点,修一条公路到达A点,要想使这个 E 路线长度理论上最短,应该如何设计?H问题:空间中包括哪些距离?求解
4、空间距离常 居 用的方法有哪些?K答案:点到直线、点到平面、两条平行线及两BB侧棱长为4,则点B到平面Aoc的个平行平面的距离;传统方法和向量法。二、典例解析例1.已知直三棱柱ABC-A出G中,AA1=1,AB=4,BC=3,NABC=90。,求点B到直线AiCi的距离。/、用向量法求点到直线的距离时需注意以下几点:(1)不必找点在直线上的垂足以及垂线段;(2)在直线上可以任意选点,但一般选较易求得坐标的特殊点;(3)直线的方向向量可以任取,但必须保证计算正确。延伸探究1例1中的条件不变,若M,N分别是45,AC的中点,试求点Cl到直线MN的距离。延伸探究2将条件中直三棱柱改为所有棱长均为2的
5、直三棱柱,求点B到ACi的距离。M,N分别为AB, SB的中点,如图所示。求点8到平面CMN的距离。M例2在三棱锥S-ABC中,LABC是边长为4的正三角形,平面SAC-L平面ABC,SA=SC=2如求点到平面的距离的主要方法(1)作点到平面的垂线,点到垂足的距离即为点到平面的距离。(2)在三棱锥中用等体积法求解。(3)向量法:d=呼(为平面的法向量,A为平面上一点,MA为过点A的斜线段)Inl跟踪训练1在直三棱柱中,AA=AB=BC=3,AC=2f。是AC的中点。(1)求证:BC平面455(2)求直线BC到平面48。的距离。金题典例如图,在直三棱柱ABe-AIBIG中,NABC=90。,BC
6、=2, CCi =4,点 E 在棱 BBl上,EB=l,DfF,G分别为CG,BC,AICl的中点,石”与BQ相交于点儿(1)求证:81O_L平面AB。;(2)求证:平面EG/平面ABQ;(3)求平面EG厂与平面A8O的距离。总结:求两个平行平面的距离,先在其中一个平面上找到一点,然后转化为该点到另一个平面的距离求解。注意:这个点要选取适当,以方便求解为主。【达标检测】1 .两平行平面,A分别经过坐标原点。和点42,1,1),且两平面的一个法向量n=(-l,0,1),则两平面间的距离是()AJB.22C.3D.322 .若三棱锥P-A8C的三条侧棱两两垂直,且满足BA=PB=PC=I,则点P到
7、平面ABC的距离是()3 .如图,正方体A8CZ)-ABGO的棱长为1,。是平面48GQl的中心,则0到平面ABCiDi的距离是(A.-B.24C.立D.渔224 .RtMBC的两条直角边3C=3,Ae=4,PCj_平面ABC,PC彳,则点P到斜边AB的距离是。5 .棱长为1的正方体ABCD-A山IGol中,M,N分别是线段88,BIG的中点,则直线MN到平面ACDi的距离为。课堂小结运用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 向量 应用 142 研究 距离 夹角 问题