2.5直线与圆的位置关系(分层练习)(解析版).docx
《2.5直线与圆的位置关系(分层练习)(解析版).docx》由会员分享,可在线阅读,更多相关《2.5直线与圆的位置关系(分层练习)(解析版).docx(36页珍藏版)》请在第壹文秘上搜索。
1、第2章对称图形一圆2.5直线与圆的位置关系精选练习基础篇一、单选题1.如果。的半径为6cm,圆心。到直线/的距离为d,且d=7cm,那么。和直线/的位置关系是()A.相离B.相切C.相交D.不确定【答案】A【分析】根据直线和圆的位置关系的进行判断即可.【详解】解:.)O的半径为6cm,圆心。到直线/的距离为d,且d=7cm,.*.drt直线和圆相离.故选:A.【点睹】本题考查/直线和圆的位置关系的应用,注意:己知。的半径为r,如果圆心。到直线/的距离是d,当心厂时,直线和圆相离,当心/时,直线和圆相切,当d8的度数为()【答案】AC. 50D. 25【分析】由切线性质得出NRAO=90。,根据
2、:角形的内角和是180。、对顶角相等求出NBOD=NAOP=50。,即可得出答案;【详解】解:以与。相切于点A,人。是。的直径,.OAPA,.ZO=90o,ZP=4(T,.ZAoP=50。,NBOD=ZAOp=50。,OB=OD,.NOBD=NoDB,.ZADB=l(180o-50)=65,故选:A.【点睛】本题考查圆内求角的度数,涉及知识点:切线的性质、对顶角相等、等腰三角形的性质、三角形的内角和是180,解题关键根据切线性质推出NPAO=90。.8 .如图,附,PB分别与Oo相切于A,8两点,NP=72。,点。是劣弧AB上的一点,则NAO8=()【答案】D【分析】根据切线的性质得NQAP=
3、N08片90。,再利用四边形内角和可计算出NAo8=108。,通过圆周角定理得出NACB的度数,最后通过圆内接四边形的性质得出NAOB的度数.【详解】解:Y附,P6分别与。相切于A,B两点,OAM,OB工PB,:NQAP=O8P=90,:,ZAOB+ZP=180,/.ZAOB=180o-72=108,:ZACB=-ZAOB=54,2Y四边形AoBC是圆内接四边形,ZACB+ZADfi=180,,ZADB=180o-ZACB=180o-54=126,故选:D.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角
4、三角形解决有关问题.也考查了圆周角定理.9 .如图,在AAOB中,NAoB=90。,08=3,半径为1的。与。8交于点C,且AB与。相切,过点C作CQJ_OB交AB于点。,点M是边OA上动点.则AMCO周长最小值为()【答案】A【分析】延长CO交C)O于点E连接Ed此时周长最小.根据切线性质和勾股定理可求出CO的值,再根据三角形的周长公式可以算出最小值.【详解】如图,延长Co交G)O于点E,连接EZX交Ao于点M,此时MCD周长最小.设A8于。相切于点尸,连接OR则NoE8=900.oc=.-OF=OC=X.:.BF=yOB2-OF2=22QCDlOfiIlOC为C)O的半径.8是。的切线.D
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2.5 直线 位置 关系 分层 练习 解析