2023年一次函数反比例函数二次函数知识点归纳总结.docx
《2023年一次函数反比例函数二次函数知识点归纳总结.docx》由会员分享,可在线阅读,更多相关《2023年一次函数反比例函数二次函数知识点归纳总结.docx(25页珍藏版)》请在第壹文秘上搜索。
1、二次函数知识点详解(最新原创助记口诀)知识点一、平面直角坐标系1,平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。其中,水平的数轴叫做X轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点0(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。为了便于描述坐标平面内点的位置,把坐标平面被X轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:X轴和y轴上的点,不属于任何象限。2、点的坐标的概念点的坐标用(a,b)表达,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能
2、颠倒。平面内点的坐标是有序实数对,当WZ?时,(a,b)和(b,a)是两个不同点的坐标。知识点二、不同位置的点的坐标的特性1、各象限内点的坐标的特性点P(,y)在第一象限OX0,y0点P(x,丫)在第二象限0%0,0点P(x,y)在第三象限UxO,y0,丁0b0_/kyL/X图像通过一、二、三象限,y随X的增大而增大。b0y0/图像通过一、三、四象限,y随X的增大而增大。K0y,图像通过一、二、四象限,y随X的增大而减小b0时,图像通过第一、三象限,y随X的增大而增大;(2)当k0时,y随X的增大而增大(2)当k0时,y随X的增大而减小6、正比例函数和一次函数解析式的拟定拟定一个正比例函数,就
3、是要拟定正比例函数定义式y=Zx(k0)中的常数ko拟定一个一次函数,需要拟定一次函数定义式y=Zx+6(k0)中的常数k和bo解这类问题的一般方法是待定系数法知识点五、反比例函数1、反比例函数的概念一般地,函数y=K(k是常数,ko)叫做反比例函数。反比例函数的解析式也可以写成y=K-X的形式。自变量X的取值范围是XWO的一切实数,函数的取值范围也是一切非零实数。2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量xHO,函数y0,所以,它的图像与X轴、y轴都没有交点,即双曲线的两个分支无限接近坐
4、标轴,但永远达不到坐标轴。3、反比例函数的性质4、反比例函数解析式的拟定拟定及误是的方法仍是待定系数法。由于在反比例函数y=幺中,只有一个待定系数,因此只需要一X对相应值或图像上的一个点的坐标,即可求出k的值,从而拟定其解析式。5、反比例函数中反比例系数的几何意义如下图,过反比例函数),二七(女WO)图像上任一点P作X轴、y轴的垂线PM,PN,则所得的矩形XkPMON的面积S=PMPN=HW=同。Py=一,孙=SS=M知识点六、二次函数的概念和图像1、二次函数的概念一般地,假如特丁=办2+以4也。是常数,0),特别注意a不为零那么y叫做X的二次函数。y=or?+尿+eg,。,。是常数,。0)叫
5、做二次函数的一般式。二次函数的图像是一条关于X=-A对称的曲线,这条曲线叫抛物线。2a抛物线的重要特性:有开口方向;有对称轴:有顶点。3、二次函数图像的画法五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴(2)求抛物线y=ax2+hx+c与坐标轴的交点:当抛物线与X轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C的对称点Do将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。当抛物线与X轴只有一个交点或无交点时,描出抛物线与y轴的交点C及对称点D。由C、M、D点可粗略地画出二次函数的草图。假如需要画出比
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 一次 函数 反比例 二次 知识点 归纳 总结