7.3.17.3.2三角函数的周期性和图象与性质.docx
《7.3.17.3.2三角函数的周期性和图象与性质.docx》由会员分享,可在线阅读,更多相关《7.3.17.3.2三角函数的周期性和图象与性质.docx(24页珍藏版)》请在第壹文秘上搜索。
1、7.3.1.2:三角函数的周期性和图象与性质【考点梳理】考点一、用“五点法”作正弦函数和余弦函数的筒图(1)在正弦函数尸Sin心问0,2的图象中,五个关键点是:(0,0),(”),(,0),管一1),(2,0).在余弦函数y=cosx,x0,2c的图象中,五个关键点是:(0,1),&0),(,1),砥,0),(2,1).考点二、正弦、余弦、正切函数的图象与性质(下表中kZ)函数y=sinxy=CosXy=tanx图象yF1y_7T1-JUW定义域RR-.r+j值域-1,1-1,1R周期性22奇偶性奇函数偶函数奇函数递增区间2E,2+2-.2k(左冬E+?递减区间2Aty.2%+竽2A,2A对称
2、中心(k,0)(k+,0)作)对称轴方程X=E+5x=k【题型归纳】题型一、正余弦三角函数的图像问题1. (2023高一)设。为常数,且满足Q=SiiU+1,且工4-,的X的值只有一个,则实数的值为().A. 0B. 1C. 2D. 0或 2【答案】D【分析】利用五点作图法作出y=siar+l,工武-兀可的函数图象,依题意与y=s欣+1在兀可上只有1个交点,结合图象即可求出参数的值.【详解】解:因为y=sinx+l,列表:X022-y12101描点、连线,函数图象如下图所示:因为=siu+l,且xw-兀,0的X的值只有一个,所以y=与y=sinx+l在t,兀上只有1个交点,结合图象可知=O或。
3、=2.故选:D2. (2023上安徽合肥高一校联考期末)函数/)=SinX,g(x)=cosx的图象在区间-2编兀的交点个数为()A.3B.4C.5D.6【答案】A【分析】作出正、余弦函数图象,利用图象直接判断两者交点个数.【详解】分别作出/(x)=SinX,g(x)=cos元在区间-2兀,兀上的图象,如图所示,由图象可知:/(x)=Sin*g(x)=cos元的图象在区间卜2,的交点个数为3.故选:A.3. (2022高一课时练习)在(0,2万)内,使SinXcoSM的X的取值范围是()C.D.【分析】在同一坐标系作函数V=SinX以及y=8S的图像即可求解. 37,T故选:D.行上存在最题型
4、二、正弦余弦和正切的定义域值域和最值问题4. (2023下内蒙古呼和浩特高一呼和浩特市土默特中学校考期中)若函数/(x)=2sin5在区间小值-2,则非零实数0的取值范围是()B.6,+)C. (-,-2|,+8D.-00,-y O 6,+00)【答案】C【分析】根据非零实数。的正负进行分类讨论,列出不等式求解即可.【详解】若或0,则一加sa因为函数/(x)=2SinS在区间上存在最小值-2,所以一-f,得到口;若60,则一3COXCD,45因为函数/(x)=2SinS在区间-K上存在最小值-2,所以23二,6y-2.42所以非零实数。的取值范围是(-,-2|,心).故选:C5. (2023下
5、北京怀柔高一北京市怀柔区第一中学校考期中)已知函数f(x)=cos(兀-力+1,则()A.”可是偶函数,最大值为1B.”可是偶函数,最大值为2C./(x)是奇函数,最大值为1D.”是奇函数,最大值为2【答案】B【分析】利用诱导公式将函数化简,再结合余弦函数的性质分析即可.【详解】HW=s(-x)+l=-cosx+l,定义域为R,则/(T)=-COS(T)+1=-COSX+l=(x),所以/(x)是偶函数,J-lcosxl,所以一l-cosxl,则0-cosx+l2,所以”x)0,2,即“力的最大值为2.故选:B6. (2023下内蒙古包头高一统考期末)函数。圄的定义域是()5E,丁5,I122
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 7.3 17.3 三角函数 周期性 图象 性质