专题07函数的应用(二)【解析版】.docx
《专题07函数的应用(二)【解析版】.docx》由会员分享,可在线阅读,更多相关《专题07函数的应用(二)【解析版】.docx(31页珍藏版)》请在第壹文秘上搜索。
1、专题07函数的应用(二)I-(1)定义:对于函数y=(x),我们把使用:)=0成立的实数X叫做函数y=(x)的零点.(2)几何意义:函数y=(x)的图象与X轴的交点的横坐标就是函数y=(x)的零点.(3)结论:方程(x)=0有实数根=函数),=危)的图象与X轴有交点Q函数y=(x)有零点二、函数零点的判定定理条件结论函数y=)在,句上y=x)在(,6)内有零点(1)图象是连续不断的曲线(2)ay(b)0三、二分法的定义对于在区间a,b上连续不断且f(a)f(b)V0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二
2、分法.四、判断函数y=f()是否存在零点的方法(I)方程法:判断方程yu)=0是否有实数解.(2)图象法:判断函数y=(x)的图象与X轴是否有交点.(3)定理法:利用零点的判定定理来判断.五、有关函数零点的三个结论(1)若y=(x)在闭区间口,句上的图象连续不断,且有/(VS)0,则函数y=(x)一定有零点.(2y3V(b)0是y=)在闭区间口,0上有零点的充分不必要条件.(3)若函数/(x)在口,句上是单调函数,且/(x)的图象连续不断,则3)3)0,bl)七、对数函数模型的应用y(x)=mlogx+n(m,,Q为常数,mQ,0,a)八、函数模型的应用题型Oh求函数的零点【典例1】(2023
3、上浙江温州高一浙江省平阳中学校联考期中)若不等式0.-co的解集为x-3x0的解集为x-3x2,所以方程加r-c=0的两根分别为-3和2,且0,因为/(x)=2+2ar-3。,所以(-3)一(24)=T,4a所以=l,/(x)=+2x-3.故答案为:/(x)=x2+2x-3题型03:根据函数零点判断函数值的符号【典例5】(2021上河南濮阳高一统考期末)已知。是函数/(x)=0S-lo&x-f的零点,若0C./(xo)g).【详解】函数的定义域为(0,+8),已知函数y=0.5y=-Iog2X,y=-/在(0,+巧上是减函数,所以可判断函数/(x)=0S-1幅-在(0,+R)上是减函数,又因为
4、。是函数/(x)=05,-1脸-的零点,即/()=0,根据单调性可得,当Oe。)=0故选:B.【典例6】(2018上北京海淀高一北京市十一学校校考期中)已知/是函数/(力=2+-1的一个零点,若xe(-l,与),x2(x0,+),则()A. /(x1)0,(x2)0B /(x1)0C. /(x1)0,(x2)0D- /(x1)0,(x2)0【答案】B【分析】由已知得出/(%)=。,分析出函数/(x)的单调性,进而可判断出/(3)、/()的符号.【详解】由于函数y=2、y=-l在K上均为增函数,所以,函数/(x)=2+x-l在夫上为增函数,因为玉(T,与),x2(x0,+),(x1)f(xo)=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 解析版 专题 07 函数 应用 解析