刘蒋巍:双变量任意与存在问题考察的5个视角.docx
《刘蒋巍:双变量任意与存在问题考察的5个视角.docx》由会员分享,可在线阅读,更多相关《刘蒋巍:双变量任意与存在问题考察的5个视角.docx(4页珍藏版)》请在第壹文秘上搜索。
1、双变量任意与存在问题考察的5个视角文/刘蒋巍一.双变量任意与存在问题1 .若於),g(%)的值域分别为A,B,则:(1)(“任意=存在型)/加。,m%2E,使得於)=g(2)成立,则AG8;(2)(“存在=存在型)mxO,3x2E,使得凡n)=g3)成立,则Ani0.2 .不等问题:(1)(“任意N仁、V)任意”型)VmO,X2E,均有yU)g(2)恒成立,则y(x)ming(x)max.注:防止误将VX均有/U)g(x)恒成立,转化为/U)ming(x)max,一般应作差构造函数Fa)=AX)g(X),转化为Hx)min0恒成立;(2)(任意N(、g3)成立,则Y)ming(X)min.(3
2、)(”存在(、g(x2)成立,则yx)maxg(x)min.注:防止误将mXO,均有於)g(x)恒成立,转化为/)maxgQ)min,一般应作差构造函数Fa)=u)-g0),转化为Fa)n三o恒成立.二.考察的5个视角视角1:形如“对任意XUA,总存在X23,使得4Xl)=g(#2)成立”191例1已知函数U)=3x2+2-/2,g(x)=%H-1若对任意Xi总存在X20,2,使得yU)=ga2)成立,求实数。的取值范围.【解答】y(x)=3x2+2-a(a+2)=3(x+g)26?2一所以yU)min=4-=/2。一又g(x)的值域是卜点6,由题意可知,段)的值域是g(x)的值域HT)W6,
3、一;,61的子集,所以I-a2-2a-,解得一2WaW0,故实数a的取视角2:形如“存在mA及肛8,使得凡n)=g(x2)成立“例2已知函数4r)=2x,xO,g,函数g(x)=A-2女+2(k0),x0,;,若存在x0,T及X20,I,使得/(x1)=g(x2)成立,求实数的取值范围.【解答】由题意易得函数/U)的值域为g(x)的值域为22幺2-yj,且两个值域有公共部分.当两个值域没有公共部分时,22上1或2一|左0,解得k;或Q*所以要使两个值域有公共部分,实数的取值范围是区变式已知函数次式)=#+工,g(x)=ln(x+l)-,若存在Xi,X20,2Jj使得yU)=g(2),求实数Q的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 刘蒋巍 变量 任意 存在 问题 考察 视角