第10讲放缩法赋值找零点.docx
《第10讲放缩法赋值找零点.docx》由会员分享,可在线阅读,更多相关《第10讲放缩法赋值找零点.docx(5页珍藏版)》请在第壹文秘上搜索。
1、第10讲放缩法赋值找零点在基础篇我们学过了零点问题,会利用函数单调性和零点存在定理来确定零点,要应用零点存在定理就必须找到一个点的值大于零或者小于零,而这个点不需要很精确,就可以完美地使用放缩法来近似计算.可将这个找点判定正负号的过程称为赋值.常用的赋值方法如下:1 .直接常数赋值法:代入一个常数点就可以判定出函数值的正负号,这个点也通常是一些特殊点,比如/(0)J(I),f(e)等.2 .参数放缩赋值法:有时代入常数点后,会得到一个含参数的函数值,比如/=aea+3na,这时,无法直接判定出正负号,这个时候就需要利用参数赋值,结合放缩法来判定正负号.3 .双量最值放缩赋值法:参数赋值和常数赋
2、值都无法直接得到点,就需要一个既有参变量(参数)又有常量(常数)的范围点,通过两个量取最值的方式放缩,来判定出正负号.参数放缩赋值法参数放缩法赋值是放缩法的一个应用,难度较大,当然下面的很多例题用参变分离法会非常简单,当然这里为了讲解赋值法,就不考虑参变分离法了.这类赋值法的一般解题思路如下:第一步:判定可行性,在赋值之前,需要利用极限来判定赋值的可行性,赋值也只不过是极限更精确的取点方式,所以如果极限判定出不存在零点就不用臼费功夫了.前面讲过,极限也可以作为粗略的解题步骤.第二步:放缩找点,结合函数单调性和前面所学的放缩法找到含参赋值点,这里需要注意,找大于零的点,则需往小放缩,找小于零的点
3、,则往大放缩.第三步:赋值验证,含参赋值点不仅要满足不等式,还要满足自身取值范围.【例1】函数/(x)=g+2x+(2-c)lnx,若曲线=(x)在点X=I处的切线/与C有且只有一个公共点,求正数。的取值范围.【解析】易得切线y=4x+-2,代入尸/(x)整理得以幻=和2卜2(1)+(2-a)lnx=0,题设等价于函数g(x)有且只有一个零点,gx)=a22x+2.=X(x-1)(oi+-2)9X令g,(X)=O可解得百=或电我们来讨论两个点是否在定义域内,以及比较两个a点的大小.2/7(1)当0时,即2时,可知当xl时,gO,g(x)单调递增.a当OVXVl时,g)v,g(x)单调递减.x=
4、l是g(x)唯一的极小值点,也是最小值点.且g=0,故2满足题意.(2)当20O,即0vv2时,由,(幻=0=西=1,x,=2g.aa当为=,即=l时,g(x)=WL0,g(x)单调递增.又g=0,.a=l满足题X设. x x2,即 Ol 时,1 x2-a,g(x)-V2使得8(%)。,此时要找函数值大于零的点,所以要往小放缩,我们不难看出,当xal时,(2-)111x0,所以直接对g(x)进行去项放缩,g(x)-(x2-l)-2(x-l)=(x-l)(x+l)-2(x-l)-x-2=O.2v7L2|_2_右左42-a二.存在=.aag(%)M焉一1)一2(%一I)=(XoT)(+l)-2(-
5、l)0-2=0.在(。,Xo)内,g(x)存在零点,.g(x)至少有两个零点,不合题意.当2z,即l2时,在(七,1)上,gg(D=在(,与上g*)单调递增,.在(o,与上希望存在修,使g(s)o此外要找到函数值小于零的点,应往小放缩,不难看出,当0xv三vl时段(2-i)o,-2(-i)v2.-2I去项、放缩得g(x)2+(2-)lnx=O=0均=e2-“(其中不等式e7V-).2.存在巧=eH与ql,并注意到微(4一1)0, -2(巧-1)2.二在1,亍aX内g(x)存在零点,从而g(x)至少有两个零点,不合题意.综上所述,=l或42.【例2】函数/(x)=lnx-r(eR).若方程/(x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 10 讲放缩法 赋值 找零