第6讲构造辅助函数的方法(原卷版).docx
《第6讲构造辅助函数的方法(原卷版).docx》由会员分享,可在线阅读,更多相关《第6讲构造辅助函数的方法(原卷版).docx(4页珍藏版)》请在第壹文秘上搜索。
1、第6讲构造辅助函数的方法对于证明与函数有关的不等式、零点或已知不等式在某个范围内恒成立求参数取值范围,讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并通过求导研究其单调性或寻求其几何意义来解决.题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也不同,所以为了构造出合理的函数,方便我们解题,我们需要遵循一大构造原则是“导函数可判定原则”.所谓的“导函数可判定原则”就是所构造的函数,求导之后要能够判定出函数的正负号,从而研究原函数单调性,如果无法判定导函数正负号,则说明原函数构造得有问题,需要重新构造.本节会总结出一些常用的构造函数的方法,如果解题过程中求导很复杂或者进行不下去
2、就需要思考函数构造得是否合理,而且在解题过程中函数的构造方式有很多种,要选择合理的构造方式,而所要遵循的就是“导函数可判定原则”.构造法一:移项作差构造函数移项作差构造是我们最常用的方法,当试题中给出简单的基本初等函数,例如/(x)=x3,(x)=lnx,进而证明在某个取值范围内不等式/(x).g(x)成立时,可以通过移项作差,构造函数/(X)=/(x)-g(x),进而证明RX)IniIl即可,在求最值的过程中,可以利用导数作为工具.注意:下面的例题用到了隐零点相关的内容,读者如果有疑惑可以在看完后面隐零点部分的章节后再回来看.例1已知函数/(x)=(2-i)e其中R,Tx施)j(x)依一1,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 构造 辅助 函数 方法 原卷版