精品解析:第一章集合与常用逻辑用语讲核心(解析版).docx
《精品解析:第一章集合与常用逻辑用语讲核心(解析版).docx》由会员分享,可在线阅读,更多相关《精品解析:第一章集合与常用逻辑用语讲核心(解析版).docx(32页珍藏版)》请在第壹文秘上搜索。
1、第一章集合与常用逻辑用语1 .元素与集合(1)集合中元素的特性:、.(2)元素与集合的关系:如果是集合力的元素,就说集合4记作:如果不是集合力中的元素,就说集合4记作.(3)集合的表示方法:列举法、描述法、图示法.(4)常用数集及其记法:数集非负整数集(或自然数集)正整数集整数集有理数集实数集复数集符号N或(N+)ZQRC注:图表中所列举的字母符号均是集合的形式,不要加,这是因为便不是实数集,它表示一个集合,该集合中只有一个元素R.【答案】.确定性.互异性.无序性.属于.q4.不属于.aA.N【解析】【分析】略【详解】略故答案为:确定性;互异性;无序性;属于;aeA;不属于;N.2 .集合间的
2、基本关系文字语言符号语言记法子集集合4中的任意一个元素集合B中的元素A=x三B(或)真子集集合A是集合B的子集,但B中存在元素AAGB,且mxoB,XOAAB(或8Z)相等集合/的任何一个元素都是集合8的元素,同时集合8的任何一个元素都是集合力的元素AQB,RBQA空集不含任何元素的集合x,x0,QA,0-B(80)注:(1)子集的传递性:AGB,BGC,则4GC(2)子集个数:对于有限集合4,其元素个数为,则集合Z的子集个数为2”,真子集个数为21,非空真子集个数为2,2.【答案】.都是.AQB.B2A.不属于.A=B.0【解析】【分析】根据集合的包含关系即可求解.【详解】集合力中的任意一个
3、元素都是集合8中的元素,记为力8或83人集合4是集合8的子集,但8中存在元素不属于4,记为B或8A;集合4的任何一个元素都是集合B的元素,同时集合8的任何一个元素都是集合力的元素,记为月=B;不含任何元素的集合,记为0.故答案为:都是AQB BnA不属于A=B 0.3.集合的基本运算文字语言符号语言图形语言记法并集由所有属于集合/集合B的元素组成的集合小Z,或x三B交集由所有属于集合/集合B的元素组成的集合xxA,且x三B补集由全集。中集合Z的所有元素组成的集合小U,且xL0【答案】.或属于.4UB.且属于.408.不属于.jA【解析】【分析】根据集合的包含关系和集合的运算即可求解.【详解】由
4、所有属于集合力或属于集合8的元素组成的集合,记为力U历由所有属于集合且属于集合8的元素组成的集合,记为48:由全集U中不属于集合4的所有元素组成的集合,记为电/.故答案为:或属于AUB且属于ACB不属于电力.4 .集合运算性质(1)并集运算性质:4UB34;4UB3B;AUA=A;JU0=J;AUB=BUA.(2)交集运算性质:ACBQA;ACBQiACA=Ai%110=0;ACB=BCA.(3)补集运算性质:411(CU4)=0,JU(CU4)=U,CU(CuA)=A.(4)重要等价关系:AnB=A=AEBoAUB=B;AClB=AUBA=B.5 .元素个数记含有限个元素的集合48的元素个数
5、为cs(N),cm(6),贝J:Wd(AUB)=card(J)+card(5)card(J).6 .德摩根定律又称反演律,即G7(411B)=(CuA)U(CuB),G7(NUB)=(CuA)(CuB).7 .五个关系式AQB,ACB=AfAUB=B,CljBqCU4以及An(CUB)=0是两两等价的.4 .充分条件、必要条件与充要条件如果P=/则称P是g的,g是P的.一般地,数学中的每一条判定定理都给出了相应数学结论成立的一个充分条件;每一条性质定理都给出了相应数学结论成立的一个必要条件;每一条数学定义都给出了相应数学结论成立的一个充要条件P是9的充分不必要条件记作一且P是9的必要不充分条件
6、记作.且P是9的充分必要条件(简称充要条件)记作P是g的既不充分又不必要条件记作一且【答案】.充分条件.必要条件.p=夕.夕4p.p4q.q=p.POq.p4夕.qip【解析】【分析】根据充分条件和必要条件的定义即可求解.【详解】P=%则称P是q的充分条件,夕是P的必要条件;P是9的充分不必要条件,记作P=夕且夕4p;P是g的必要不充分条件,记作p4夕且夕=P;P是9的充分必要条件(简称充要条件),记作p=q;P是9的既不充分又不必要条件,记作p4夕且夕&p.故答案为:充分条件必要条件P=夕qipPlq夕=PPOqPIqqip.答案:5 .全称量词与存在量词(1)全称量词:短语“所有的”“任意
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品 解析 第一章 集合 常用 逻辑 用语 核心