重难点04圆锥曲线三角形面积与四边形面积问题(六大题型)(解析版).docx
《重难点04圆锥曲线三角形面积与四边形面积问题(六大题型)(解析版).docx》由会员分享,可在线阅读,更多相关《重难点04圆锥曲线三角形面积与四边形面积问题(六大题型)(解析版).docx(29页珍藏版)》请在第壹文秘上搜索。
1、重难点04圆锥曲线三角形面积与四边形面积问题【题型归纳目录】题型一:三角形的面积问题之治=;底高题型二:三角形的面积问题之分割法题型三:三角形的面积比问题题型四:四边形的面积问题之对角线垂直模型题型五:四边形的面积问题之一般四边形题型六:三角形、四边形的面积问题之面积坐标化【方法技巧与总结】1、三角形的面积处理方法(1) S=:底高(通常选弦长做底,点到直线的距离为高)(2)S=:水平宽铅锤高=如用kfI或SA=*z-%(3)在平面直角坐标系Xoy中,己知4ON的顶点分别为。(0,0),M(再,弘),N(X?,必),三角形的面积为S=JjvlzW.2、三角形面积比处理方法(1)对顶角模型(2)
2、等角、共角模型3、四边形面积处理方法(1)对角线垂直(2) 一般四边形(3)分割两个三角形4、面积的最值问题或者取值范围问题一般都是利用面积公式表示面积,然后将面积转化为某个变量的一个函数,再求解函数的最值(一般处理方法有换元,基本不等式,建立函数模型,利用二次函数、三角函数的有界性求最值或利用导数法求最值,构造函数求导等等),在算面积的过程中,优先选择长度为定值的线段参与运算,灵活使用割补法计算面积.【典型例题】题型一:三角形的面积问题之小=;底高例1.(2023全国高三校联考阶段练习)已知椭圆gE=l(60)的一个焦点与抛物线=8y的焦点ab相同,且点(1,&)在椭圆上.(I)求椭圆的标准
3、方程;(2)设过点(0,3)的直线/与椭圆交于不同的两点48,且48与坐标原点。构成三角形,求力03面积的最大值.【解析】(1)抛物线=8y的焦点坐标为(0,2),.椭圆的半焦距c=2,c=2A+=l解得/=8万=4,a2=h2+c2椭圆的标准方程为仁+=184(2)设点N(XpK)*(人,72)VA9B9O三点构成三角形,所以直线/的斜率存在且不为0,则可设直线/的方程为),=区+3,y=kx+3,联立/+=184消去N整理得(2+公)/+6履+1=0.由()得36124(2+12)0,6kWi7尸2工(1 +/)6k2 + k242 + k23易知,点。到直线/:y=+3的距离h=-J=当
4、且仅当,即制时等号成立,:.HlAOBLHI积的最大值为35/5,=26例2.(2023四川巴中统考一模)己知椭圆UW+y=1(。60)左右焦点分别为耳(To),g(L0),上顶ab点为8,直线8片被椭圆C截得的线段长为(1)求椭圆C的方程;(2)设过鸟的直线/与椭圆C交于尸,。两点,若BP工BQ,求三角形8尸。的面积.【解析】由题意,得上顶点为6(0,6),设OaoJO)(0)y0=bx0+b,2故直线86的方程为y=bx+b,由焉yl消去歹解得:=-M,ab:.IdI=+P-L)-d=-a-,.,解得/=2,故2=la1+3椭圆C的方程为工+/=1;2(2)由(1)及题意知,在线/不过点5
5、且与X轴不重合设直线)的方程为x=my+l(mT),P(wjl+l,jl),Q(my2+yy2)由BPlBQ得:SPBQ=O,(wy1+l)(my2+l)+(j1-1)(2-1)=0变形化简得:(小+)yiy2+(利-1)(必+为)+2=0(*)由二?:1消去X整理得:(w2+2)+2-l=0X+2y-2=0,=(2m)2+4(/+2)=8(/+1)0恒成立由韦达定理,得:必+乂=一一彳,必为=一一L;,w+2m+2代入(*)式得:-*-冽华+2=0nr+2m+2化简得:M-2m-3=0,由-l及上式解得=3,,直线I的方程为X3y1=0,=8(2+l)=80,由弦长公式及求根公式得:IPOI
6、=WNfI1080 202i11又点8到直线/的距离为d=-=105S-p.1x202=W5.2251111例3.(2023福建漳州高二福建省华安县第一中学校考期中)已知椭圆氏+=1(60)的半焦距为Q-b%原点。到经过两点(GO),(0,力)的直线的距离为gc,椭圆的长轴长为4J(1)求椭圆E的方程;(2)直线/与椭圆交于48两点,线段48的中点为M(2,T),尸为椭圆的左焦点,求三角形处8的面积.【解析】(D经过两点(G0),(0力)的直线为:-+=1,即云+少-bc=O.cb由一知:原点到直线的距离d=-T=生=%即2+c202a2又2。=46,则b=I所以椭圆的标准方程为:+-=112
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 难点 04 圆锥曲线 三角形 面积 四边形 问题 六大 题型 解析