2023-2024年中国人工智能计算力发展评估报告-IDC.docx
《2023-2024年中国人工智能计算力发展评估报告-IDC.docx》由会员分享,可在线阅读,更多相关《2023-2024年中国人工智能计算力发展评估报告-IDC.docx(47页珍藏版)》请在第壹文秘上搜索。
1、号IDC浪潮信息2023-2024年中国人工智能计算力发展评估报告目录第一章人工智能发展迈入新阶段041.1全球:生成式人工智能兴起,产业步入关键转折点051.2中国:人工智能产业加速创新,机遇与挑战并存10第二章人工看能算力及应用142.1芯片:满足多场景高质量应用需求152.2服务器:高算力和高能效受到持续关注162.3算法和模型:加速模型迭代以探索行业实践1924Al软件基础设施:加速大模型的应用落地202.5边缘智能:以广泛的部署推进智能的延伸222.6绿色算力:基于液冷服务器构建可持续发展数据中心232.7人工智能算力服务和云:根据算力需求优化服务模式252.8应用:企业积极投入以满
2、足大模型时代的应用需求26第三通中国人工智能计算力发展评估343.1行业排名353.2地域排名39第四章行动建披444.1对行业用户的建议454.2对技术供应商的建议46IDC观点2023年是人工看能发展的猫要转折年,企业正加速从业务数字化迈向业务看能化.大模型的突破和生成式人工智能的兴起为企业实现产品/流程的革新提供先进生产工具,引领企业和产业迈入智能创新的新阶段。对于企业人而言,其将不再局限于思考“如何在产品/流程中增加智能化能力,而需要更多关注“如何使用人工智能实现产品/流程的革新”。大模型和生成式人工智能的发展将引发计算范式之变、产业动置之变,以及真力服务格局之变。未来几年,构建和调优
3、生成式人工智能基础模型以满足应用需求,将为整个基础设施市场带来改变和发展机遇。从计算范式角度而言,人工智能算力基础设施将持续向高性能、高互联等方向演进以更高的计算能力和链接速度加速实现大规模参数和数据集的训练和调优;不断提升算力泛在性,推进人工智能在云-边一端的覆盖,满足无处不在的智能化需求;通过优化计算架构、算法和软件栈,支持多元异构算力的协同,构建软硬件生态,加速计算技术的发展和创新。从产业动量角度而言,基础模型技术的突破为人工智能产业的发展增加活力,催生新的玩家和投资机会,基础模型的持续迭代、调优、场景适配和部署、落地等对基础设施层、模型层、平台层和应用层提出新的需求,带来新的服务模式,
4、降低人工智能技术的应用门槛,通过微调等方法实现与下游任务的适配,加速人工智能基础设施软件的开发、部署和应用,为用户和行业提供更多创新应用。从算力服务角度而言,传统算力资源虚拟化共享复用的机制难以满足大模型时代企业对于集群式的高性能算力需求,生成式人工智能将加速企业更多地使用人工智能就绪的数据中心设施和人工智能服务器群,供应商需要具备提供定制化的、优化的基础设施服务能力,满足单个用户对训练和推理资源的独占式、大规模、长时间使用的诉求,并缩短部署时间、提高对数据和输出的控制,满足应用场景的需求,帮助企业实现成本优化。3从感知智能到生成式智能,人工看能算力需求快速增长。大模型和生成式人工智能的发展显
5、著拉动了人工智能服务器市场的增长。IDC预计,全球人工智能硬件市场(服务器)规模将从2022年的195亿美元增长到2026年的347亿美元,五年年复合增长率达17.3%;在中国,预计2023年中国人工智能服务器市场规模将达到91亿美元,同比增长82.5%,2027年将达到134亿美元,五年年复合增长率达21.8讹从算力规模而言,预计到2027年通用算力规模将达到117.3EFL0PS,智能算力规模达1117.4EFL0PS;2022-2027年期间,预计中国智能算力规模年复合增长率达33.9%,同期通用算力规模年复合增长率为16.6%。中国市场对智能算力供给能力的街标准将加速演变,未来应用为导
6、向、系统设计为楂心将是算力升级的主要路径。中国市场对于算力供给能力的评估指标将从硬件性能向应用效果转变,企业在获得算力服务的过程中,会增加对于诸如单位时间可处理Token数量、可靠性、时延、训练时间和资金成本、数据集质量等指标的关注。技术提供商需要以应用为导向,系统为核心,构建算力基础设施,提高算力利用率,提升诸如卡间互联、多节点间互联等水平,通过灵活可扩展的集群满足市场的需求。中国应持续提升基础大模型研发能力,通过逐步完善的人工锂能工程化工具,加速应用落地。目前,受政策支持、算力水平提升、数据资源庞大以及科研实力增强等利好因素的推动,中国在基础大模型方面取得一定成绩,但仍需加大在基础性技术方
7、面的原创性突破,夯实底层模型和算法能力。在实践中,企业需要根据具体的任务和模型设计来决定参数量的大小,技术提供商需要从硬件、软件、算法、数据服务等多个维度入手,结合行业特点进行框架、模型、数据的垂直整合,提升大模型的准确性和可用性。基于液冷服务器构建绿色数据中心,推进人工智能算力可持续发展。人工智能算力的不断提升加速对能耗问题的关注。从数据中心机柜功耗上来说,传统数据中心每机架功耗一般在3-1Okw之间,而每台GPU服务器的功率可高达50kW,对于数据中心操作员和规划人员来说,需要依据计算需求对资源进行合理规划和分配,积极探索采用液冷等先进冷却方法,满足实现可持续发展提出的要求。IDC预计,2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 2024 年中 国人 智能 计算 发展 评估 报告 IDC