人教A版(2019)必修二第八章立体几何初步章节测试题(含答案).docx
《人教A版(2019)必修二第八章立体几何初步章节测试题(含答案).docx》由会员分享,可在线阅读,更多相关《人教A版(2019)必修二第八章立体几何初步章节测试题(含答案).docx(18页珍藏版)》请在第壹文秘上搜索。
1、人教A版(2019)必修二第八章立体几何初步章节测试题学校:姓名:班级:考号:一、选择题1.已知正方体48Co-AMClA的外接球表面积为27兀,点E为棱B片的中点,且OE_L平面a,点G平面a,则平面a截正方体ABC。-AECQ所得的截面图形的面积为()A812812厂81n8148482 .如图所示,已知正方形OAbC的边长为1,它是水平放置的一个平面图形的直观图,则其原图形的面积为()C22D.83 .己知正方形OABC的边长为2,它的水平放置的一个平面图形的直观图为(在OY轴上),则图形O78C的面积是()A.4B.2C2D.14 .在底面半径为1的圆锥中,若该圆锥侧面展开图的面积是2
2、,则该圆锥的体积为()A扃 6B.叵3C 233D.还35 .水平放置的AABC的直观图如图所示,。是AABC中Bv边的中点,且ATy平行于轴,则A3,A。,AtC对应于原AABC中的线段AB4。,AC,对于这三条线段,正确的DAACA.最短的是ADB.最短的是ACC.ABAC6 .我们知道立体图形上的最短路径问题通常是把立体图形展开成平面图形,连接两点,根据两点之间线段最短确定最短路线.请根据此方法求函数/(x,y)=x2-3xl+Jy2_Qy+i+yf一小Xy+丫2(X(),。)的最小值()A.2B.3C.6D.237 .已知在直三棱柱ABC-44G中石F分别为BBl,ACl的中点,AAi
3、=2,AB=2,BC=32,AC=4,如图所示,若过A,E,F三点的平面作该直三棱柱ABCG的截面,则所得截面的面积为()A.10BL5C.25D.3o8 .已知某圆台的高为2枝,上底面半径为1,下底面半径为2,则其侧面展开图的面积为()A.9B.6缶C9五Tl8二、多项选择题9 .已知AC为圆锥So底面圆。的直径(S为顶点,。为圆心),点B为圆O上异于AC的动点,so=,oc=J则下列结论正确的为()A.圆锥S。的侧面积为B.NSAB的取值范围为(专,|C.若AB=BC.E为线段AB上的动点,则(石+=0+2i5D.过该圆锥顶点S的平面截此圆锥所得截面面积的最大值为610 .如图所示的是水平
4、放置的三角形直观图,Zy是中Nc边上的一点,且DC-4与ClZ)I中,M是Af)I的中点,则直线OM与平面AACG的位置关系是,直线DM与平面BCelBl的位置关系是.16 .如图,平面四边形AHC。中,NAz)B=90。,AD=DC=2,BD=3,ABDC=-,AABD3沿着即折起,则三棱锥A-BC。的体积最大值为,三棱锥A-88体积最大时其外接球的表面积为.五、解答题17 .如图,四棱锥尸-ABCD中,尸AB为正三角形,ABCO为正方形,平面PAB_L5FffiABCD,E、尸分别为AC、BP中点.(1)证明:EF平面PCD;(2)求直线B尸与平面PAC所成角的正弦值.18 .如图所示,已
5、知ABCo为梯形,ABHCD,Cr)=245,M为线段尸C上一点.(1)设平面PAB平面PQC=/,证明:AB/1.(2)在棱Pe上是否存在点M,使得尸4/平面M3。?若存在,请确定点M的位置;若不存在,请说明理由.19 .如图,在底面半径为2,母线长为4的圆锥中内接一个高为如的圆柱,求圆柱的表面积.20 .已知,p,y是三个平面,且11夕=,a;y=b,y=c.(1)若afb=O,求证:a,b,C三线共点.(2) alIb,则4与c,与C有什么关系?为什么?21 .如图,在四棱锥尸-/WC。中,底面ABCO为正方形,侧面Rlo是正三角形,侧面以_!_底面A8C0,M是PO的中点.(1)求证:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教 2019 必修 第八 立体几何 初步 章节 测试 答案