温室气体监测技术现状和发展趋势.docx
《温室气体监测技术现状和发展趋势.docx》由会员分享,可在线阅读,更多相关《温室气体监测技术现状和发展趋势.docx(8页珍藏版)》请在第壹文秘上搜索。
1、温室气体监测技术现状和发展趋势摘要:工农业生产、化石燃料燃烧、机动车尾气排放等人类活动产生的过量温室气体加剧了全球气候变暖,研究和发展适用于不同空间、时间尺度的温室气体精确、快速、动态检测技术是环境气候研究的基础和前提。基于光谱学原理的气体检测技术,具有非接触、快响应、高灵敏、大范围监测等优点,是目前温室气体监测技术的主流研究方向。针对当前温室气体点源、面源、区域、全球等尺度下的监测需求,综合利用多种形式的光谱学测量手段,开展地面探测、地基探测、机载探测和星载探测四种典型光学观测,获取温室气体空间分布、季节变化和年变化的特征和趋势,这对理解区域碳排放、掌握源汇信息、研窕环境气候变化规律等具有重
2、要意义。一、背景需求2021年8月,联合国政府间气候变迁专门委员会(IPCC)公布了第六次气候变迁评估报告(IPCC-AR6),指出工业革命后,过多的温室气体排放己对地球环境造成了严重危害。报告显示,由于温室效应的影响,与工业化前的气温记录相比,目前全球平均升温估计为L1C,在未来20年内,全球升温或将超过1.5oCo全球升温L5时,热浪将增加,暖季将延长,而冷季将缩短,进而对自然生态系统产生严重影响,如异常气候频发、海平面升高、冰川退缩、冻土融化、中高纬生长季节延长、动植物分布范围向极区和高海拔区延伸等等。京都议定书中规定控制的6种温室气体为:二氧化碳(CO2),甲烷(CH1)氧化亚氮(0)
3、、氢氟碳化合物(HFCs)全氟碳化合物(PFCs)六氟化硫(SF6),其中后三种气体造成温室效应的能力最强,但从对全球升温的贡献百分比来说,CO2、CHl和凡0三大主要温室气体所占的比例最大,它们对全球变暖的总体贡献占到77%,浓度也呈现出逐年升高的趋势,如表1所示。大气中的CO2是三大主要温室气体中浓度最高的一种,也是对温室效应贡献最大的气体,在大气中滞留的时间为50200年。大气中CHl和帅0的浓度虽然远小于CO”但其增温潜势分别是CO?的21倍和310倍。大气中CO2、CHi和MO三种组分是目前温室气体监测的主要对象,也是当前世界各国控制减排的主要温室气体组分。表1三种主要温室气体的浓度
4、变化、增温潜势、对全球变暖的贡献以及在大气中滞留时间温室气体CO2CH4N2O工业化前浓度(ppm)2880.8480.2852020年浓度(PPm)4131.890.333年增长率0.5%1.1%0.2%-03%增温潜势I21310对全球气候变暖的贡献55%16%6%在大气中滞留的时间(年)50212120温室气体监测是研究温室气体浓度变化趋势以及源和汇的构成、性质和强度等的基础,也是温室效应评价的依据和减排措施制定的标尺。温室气体监测技术是全面掌握温室气体排放及其环境、气候效应,预测其未来变化的重要保障。发展温室气体监测仪器国产化技术,也是构建国家生态环境监测体系的重要组成部分。此外,随着
5、国家“碳达峰”和“碳中和”战略的实施,温室气体的准确监测与评估将成为降碳目标的根本前提。由于温室气体排放存在较大的时空变化特征,为了进行准确的排放估算,必须揭示温室气体排放的日变化、季节变化和空间变化的规律性,这就需要时间分辨率高、监测尺度广、准确度高、能够长时间连续观测的自动监测技术和仪器。总的来说,目前的温室气体监测,需要从点源、面源、区域、全球等不同空间尺度开发天地一体化高灵敏时空监测技术。二、研究现状目前主流的温室气体监测技术是以光和气体组分的相互作用为物理机制,根据目标组分的特征光谱,借助光谱解析算法,再结合光机电算工程技术,实现温室气体浓度在不同时间、空间、距离下的非接触定量反演。
6、常见的温室气体光谱学检测技术主要包括非分散红外光谱技术(NDIR)、傅立叶变换光谱技术(FTlR)、差分光学吸收光谱技术(DOAS).差分吸收激光雷达技术(DIAL),可调谐半导体激光吸收光谱技术(TDLAS)、离轴积分腔输出光谱技术(OATCOS)、光腔衰荡光谱技术(CRDS)、激光外差光谱技术(LHS)、空间外差光谱技术(SHS)等。其中,NDIR技术利用气体分子对宽带红外光的吸收光谱强度与浓度成正比的关系,进行温室气体反演,具有结构简单、操作方便、成本低廉等优点,但仪器的光谱分辨率和检测灵敏度较低。FTIR技术通过测量红外光的干涉图,并对干涉图进行傅立叶积分变换,从而获得被测气体红外吸收
7、光谱,能够实现多种组分同时监测,适用于温室气体的本底、廓线和时空变化测量及其同位素探测,仪器系统较为复杂,价格比较昂贵。DOAS也是一种宽带光谱检测技术,能够实现多气体组分探测,仪器光谱分辨率较低,易受水汽和气溶胶的影响。DIAL技术是一种利用气体分子后向散射效应进行气体遥感探测的光谱技术,具有高精度、远距离、高空间分辨等优点,系统较为复杂,成本较高。TDLAS技术利用窄线宽的可调谐激光光源,完整地扫描到气体分子的一条或几条吸收谱线,具有响应速度快、灵敏度高、光谱分辨率高等优势,能够实现温室气体原位点式和区域开放式探测,对于多气体组分探测通常需要多个激光器复用实现。CRDS和OATCOS技术均
8、属于小型化的气体原位探测技术,在温室气体监测方面,能够实现很高的检测灵敏度,成本比TDLAS要高。LHS和SHS都属于高精度、高光谱分辨的气体检测技术,适用于温室气体的柱浓度或垂直廓线探测,可用于地基和星载大气探测领域。虽然光谱学检测技术的原理各不相同,但基本都是基于温室气体在红外波段的特征吸收光谱来进行浓度反算的,针对不同的应用场景,综合上述技术的测量优势,可以实现多空间尺度、多时间尺度、多气体组分的连续自动监测,满足生态、环境、气候研究对温室气体排放监测的多样需求。在温室气体高灵敏探测技术方面,以美国PiCarro、ABB为代表的气体分析仪器公司,开发了高性能的CRDS、OATCOS气体检
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 温室 气体 监测 技术 现状 发展趋势