《验证图像识别在螺栓松动中的有效性.docx》由会员分享,可在线阅读,更多相关《验证图像识别在螺栓松动中的有效性.docx(2页珍藏版)》请在第壹文秘上搜索。
1、研究生周工作总结表(每周)姓名时间本周实验工作进展:实验方案设计:实验目的:验证图像识别在螺栓松动中的有效性实验装置:M6螺栓(外六角,银白)M6螺栓(外六角,黑)M6螺栓(内六角,黑),木板(灰,黑,红,蓝,原色)每木板预计:20螺栓实验流程设计:1 .验证RCNN在螺栓定位中的精确度,并与霍夫变换定位作比较原色木板上,订10个黑色外六角螺栓与IO个银白色外六角螺栓。RCNN训练集:单独黑色外六角、单独银白色外六角、混用分别观察其识别精确度同色木板上:灰色木板对银白色螺栓,黑色木板对黑色螺栓再次观察两种方法识别精度2 .混合测试:本周具体进展情况分别对5种不同色木板,各放置七个外六角银白、外
2、六角黑与内六角黑螺栓,测试方法有效性。RCNN方法预用:网络选取:alexnet (预训练后网络)利用论文中图像数据,简单应用RCNN方法进行目标检测:手动标注训练集:轮II送代II经过的时间I小枇里揆失II小此里准确度II小批里RMSEIRPNMtni-batAccuracy(hh:m:ss)I1I1I00:00:04I1.9627I40.94%0.16I67.8I5OI00:01:17I0.7126I97.04%I0.13I100.15I1OOI00:02:30I0.4789I96.25%I0.11I100.2OI140I00:03:24I0.1655I98.24%0.11I100.精度一
3、般,预计为训练量太小(仅7张图片)参考文献1. Image-basedBolt-IooseningDetectionTechniqueofBoltJointinSteelBridgesJ.H.Parkl,T.H.Kim2,J.T.Kim32. Bolt-LooseningMonitoringFrameworkUsinganImage-BasedDeepLearningandGraphicalModelHaiChienPham1,Quoc-BaoTa23. Quasi-autonomousbolt-looseningdetectionmethodusingvision-baseddeeplear
4、ningandimageprocessingThanh-CanhHuynha,Jae-HyungParkb4. Vision-basedtechniqueforbolt-looseningdetectioninwindturbinetowerJae-HyungParka,Thanh-CanhHuynhb,5. ImageRegistration-BasedBoltLooseningDetectionofSteelJoints,byXiangxiongKong*0rcIDandjianLiOrcID6. 1.atinAmericanJournalofSolidsandStructures.Pri
5、ntversionISSN1679-78170n-lineversionISSN1679-7825.Lat.Am.j.solidsstruct.vol.14no.12RiodeJaneiroDec.20177. Fullyautomatedvision-basedloosenedboltdetectionusingtheViola-JonesalgorithmLovedeepRamana,WooramChoi,Young-JinCha8. Boltlooseningangledetectiontechnologyusingdeeplearning.XuefengZhaoYangZhangNiannianWang测试集结果:(非重复训练集图像)名目D&a会9. MonitoringofCorrodedandLoosenedBoltsinSteelStructuresviaDeepLearningandHoughTransforms,byQuoc-BaoTaOrcIDandJeong-TaeKim*